spark DStreamGraph 源码

  • 2022-10-20
  • 浏览 (324)

spark DStreamGraph 代码

文件路径:/streaming/src/main/scala/org/apache/spark/streaming/DStreamGraph.scala

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.spark.streaming

import java.io.{IOException, ObjectInputStream, ObjectOutputStream}

import scala.collection.mutable
import scala.collection.parallel.immutable.ParVector

import org.apache.spark.internal.Logging
import org.apache.spark.streaming.dstream.{DStream, InputDStream, ReceiverInputDStream}
import org.apache.spark.streaming.scheduler.Job
import org.apache.spark.util.Utils

final private[streaming] class DStreamGraph extends Serializable with Logging {

  private var inputStreams = mutable.ArraySeq.empty[InputDStream[_]]
  private var outputStreams = mutable.ArraySeq.empty[DStream[_]]

  @volatile private var inputStreamNameAndID: Seq[(String, Int)] = Nil

  var rememberDuration: Duration = null
  var checkpointInProgress = false

  var zeroTime: Time = null
  var startTime: Time = null
  var batchDuration: Duration = null
  @volatile private var numReceivers: Int = 0

  def start(time: Time): Unit = {
    this.synchronized {
      require(zeroTime == null, "DStream graph computation already started")
      zeroTime = time
      startTime = time
      outputStreams.foreach(_.initialize(zeroTime))
      outputStreams.foreach(_.remember(rememberDuration))
      outputStreams.foreach(_.validateAtStart())
      numReceivers = inputStreams.count(_.isInstanceOf[ReceiverInputDStream[_]])
      inputStreamNameAndID = inputStreams.map(is => (is.name, is.id)).toSeq
      new ParVector(inputStreams.toVector).foreach(_.start())
    }
  }

  def restart(time: Time): Unit = {
    this.synchronized { startTime = time }
  }

  def stop(): Unit = {
    this.synchronized {
      new ParVector(inputStreams.toVector).foreach(_.stop())
    }
  }

  def setContext(ssc: StreamingContext): Unit = {
    this.synchronized {
      outputStreams.foreach(_.setContext(ssc))
    }
  }

  def setBatchDuration(duration: Duration): Unit = {
    this.synchronized {
      require(batchDuration == null,
        s"Batch duration already set as $batchDuration. Cannot set it again.")
      batchDuration = duration
    }
  }

  def remember(duration: Duration): Unit = {
    this.synchronized {
      require(rememberDuration == null,
        s"Remember duration already set as $rememberDuration. Cannot set it again.")
      rememberDuration = duration
    }
  }

  def addInputStream(inputStream: InputDStream[_]): Unit = {
    this.synchronized {
      inputStream.setGraph(this)
      inputStreams = inputStreams :+ inputStream
    }
  }

  def addOutputStream(outputStream: DStream[_]): Unit = {
    this.synchronized {
      outputStream.setGraph(this)
      outputStreams = outputStreams :+ outputStream
    }
  }

  def getInputStreams(): Array[InputDStream[_]] = this.synchronized { inputStreams.toArray }

  def getOutputStreams(): Array[DStream[_]] = this.synchronized { outputStreams.toArray }

  def getReceiverInputStreams(): Array[ReceiverInputDStream[_]] = this.synchronized {
    inputStreams.filter(_.isInstanceOf[ReceiverInputDStream[_]])
      .map(_.asInstanceOf[ReceiverInputDStream[_]])
      .toArray
  }

  def getNumReceivers: Int = numReceivers

  def getInputStreamNameAndID: Seq[(String, Int)] = inputStreamNameAndID

  def generateJobs(time: Time): Seq[Job] = {
    logDebug("Generating jobs for time " + time)
    val jobs = this.synchronized {
      outputStreams.flatMap { outputStream =>
        val jobOption = outputStream.generateJob(time)
        jobOption.foreach(_.setCallSite(outputStream.creationSite))
        jobOption
      }.toSeq
    }
    logDebug("Generated " + jobs.length + " jobs for time " + time)
    jobs
  }

  def clearMetadata(time: Time): Unit = {
    logDebug("Clearing metadata for time " + time)
    this.synchronized {
      outputStreams.foreach(_.clearMetadata(time))
    }
    logDebug("Cleared old metadata for time " + time)
  }

  def updateCheckpointData(time: Time): Unit = {
    logInfo("Updating checkpoint data for time " + time)
    this.synchronized {
      outputStreams.foreach(_.updateCheckpointData(time))
    }
    logInfo("Updated checkpoint data for time " + time)
  }

  def clearCheckpointData(time: Time): Unit = {
    logInfo("Clearing checkpoint data for time " + time)
    this.synchronized {
      outputStreams.foreach(_.clearCheckpointData(time))
    }
    logInfo("Cleared checkpoint data for time " + time)
  }

  def restoreCheckpointData(): Unit = {
    logInfo("Restoring checkpoint data")
    this.synchronized {
      outputStreams.foreach(_.restoreCheckpointData())
    }
    logInfo("Restored checkpoint data")
  }

  def validate(): Unit = {
    this.synchronized {
      require(batchDuration != null, "Batch duration has not been set")
      // assert(batchDuration >= Milliseconds(100), "Batch duration of " + batchDuration +
      // " is very low")
      require(getOutputStreams().nonEmpty, "No output operations registered, so nothing to execute")
    }
  }

  /**
   * Get the maximum remember duration across all the input streams. This is a conservative but
   * safe remember duration which can be used to perform cleanup operations.
   */
  def getMaxInputStreamRememberDuration(): Duration = {
    // If an InputDStream is not used, its `rememberDuration` will be null and we can ignore them
    inputStreams.map(_.rememberDuration).filter(_ != null).maxBy(_.milliseconds)
  }

  @throws(classOf[IOException])
  private def writeObject(oos: ObjectOutputStream): Unit = Utils.tryOrIOException {
    logDebug("DStreamGraph.writeObject used")
    this.synchronized {
      checkpointInProgress = true
      logDebug("Enabled checkpoint mode")
      oos.defaultWriteObject()
      checkpointInProgress = false
      logDebug("Disabled checkpoint mode")
    }
  }

  @throws(classOf[IOException])
  private def readObject(ois: ObjectInputStream): Unit = Utils.tryOrIOException {
    logDebug("DStreamGraph.readObject used")
    this.synchronized {
      checkpointInProgress = true
      ois.defaultReadObject()
      checkpointInProgress = false
    }
  }
}

相关信息

spark 源码目录

相关文章

spark Checkpoint 源码

spark ContextWaiter 源码

spark Duration 源码

spark Interval 源码

spark State 源码

spark StateSpec 源码

spark StreamingConf 源码

spark StreamingContext 源码

spark StreamingSource 源码

spark Time 源码

0  赞