spark PythonUDFRunner 源码

  • 2022-10-20
  • 浏览 (197)

spark PythonUDFRunner 代码

文件路径:/sql/core/src/main/scala/org/apache/spark/sql/execution/python/PythonUDFRunner.scala

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.spark.sql.execution.python

import java.io._
import java.net._
import java.util.concurrent.atomic.AtomicBoolean

import org.apache.spark._
import org.apache.spark.api.python._
import org.apache.spark.sql.internal.SQLConf

/**
 * A helper class to run Python UDFs in Spark.
 */
class PythonUDFRunner(
    funcs: Seq[ChainedPythonFunctions],
    evalType: Int,
    argOffsets: Array[Array[Int]])
  extends BasePythonRunner[Array[Byte], Array[Byte]](
    funcs, evalType, argOffsets) {

  override val simplifiedTraceback: Boolean = SQLConf.get.pysparkSimplifiedTraceback

  protected override def newWriterThread(
      env: SparkEnv,
      worker: Socket,
      inputIterator: Iterator[Array[Byte]],
      partitionIndex: Int,
      context: TaskContext): WriterThread = {
    new WriterThread(env, worker, inputIterator, partitionIndex, context) {

      protected override def writeCommand(dataOut: DataOutputStream): Unit = {
        PythonUDFRunner.writeUDFs(dataOut, funcs, argOffsets)
      }

      protected override def writeIteratorToStream(dataOut: DataOutputStream): Unit = {
        PythonRDD.writeIteratorToStream(inputIterator, dataOut)
        dataOut.writeInt(SpecialLengths.END_OF_DATA_SECTION)
      }
    }
  }

  protected override def newReaderIterator(
      stream: DataInputStream,
      writerThread: WriterThread,
      startTime: Long,
      env: SparkEnv,
      worker: Socket,
      pid: Option[Int],
      releasedOrClosed: AtomicBoolean,
      context: TaskContext): Iterator[Array[Byte]] = {
    new ReaderIterator(
      stream, writerThread, startTime, env, worker, pid, releasedOrClosed, context) {

      protected override def read(): Array[Byte] = {
        if (writerThread.exception.isDefined) {
          throw writerThread.exception.get
        }
        try {
          stream.readInt() match {
            case length if length > 0 =>
              val obj = new Array[Byte](length)
              stream.readFully(obj)
              obj
            case 0 => Array.emptyByteArray
            case SpecialLengths.TIMING_DATA =>
              handleTimingData()
              read()
            case SpecialLengths.PYTHON_EXCEPTION_THROWN =>
              throw handlePythonException()
            case SpecialLengths.END_OF_DATA_SECTION =>
              handleEndOfDataSection()
              null
          }
        } catch handleException
      }
    }
  }
}

object PythonUDFRunner {

  def writeUDFs(
      dataOut: DataOutputStream,
      funcs: Seq[ChainedPythonFunctions],
      argOffsets: Array[Array[Int]]): Unit = {
    dataOut.writeInt(funcs.length)
    funcs.zip(argOffsets).foreach { case (chained, offsets) =>
      dataOut.writeInt(offsets.length)
      offsets.foreach { offset =>
        dataOut.writeInt(offset)
      }
      dataOut.writeInt(chained.funcs.length)
      chained.funcs.foreach { f =>
        dataOut.writeInt(f.command.length)
        dataOut.write(f.command.toArray)
      }
    }
  }
}

相关信息

spark 源码目录

相关文章

spark AggregateInPandasExec 源码

spark ApplyInPandasWithStatePythonRunner 源码

spark ApplyInPandasWithStateWriter 源码

spark ArrowEvalPythonExec 源码

spark ArrowPythonRunner 源码

spark AttachDistributedSequenceExec 源码

spark BatchEvalPythonExec 源码

spark CoGroupedArrowPythonRunner 源码

spark EvalPythonExec 源码

spark EvaluatePython 源码

0  赞