spark JavaDecisionTreeClassificationExample 源码

  • 2022-10-20
  • 浏览 (334)

spark JavaDecisionTreeClassificationExample 代码

文件路径:/examples/src/main/java/org/apache/spark/examples/ml/JavaDecisionTreeClassificationExample.java

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
// scalastyle:off println
package org.apache.spark.examples.ml;
// $example on$
import org.apache.spark.ml.Pipeline;
import org.apache.spark.ml.PipelineModel;
import org.apache.spark.ml.PipelineStage;
import org.apache.spark.ml.classification.DecisionTreeClassifier;
import org.apache.spark.ml.classification.DecisionTreeClassificationModel;
import org.apache.spark.ml.evaluation.MulticlassClassificationEvaluator;
import org.apache.spark.ml.feature.*;
import org.apache.spark.sql.Dataset;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.SparkSession;
// $example off$

public class JavaDecisionTreeClassificationExample {
  public static void main(String[] args) {
    SparkSession spark = SparkSession
      .builder()
      .appName("JavaDecisionTreeClassificationExample")
      .getOrCreate();

    // $example on$
    // Load the data stored in LIBSVM format as a DataFrame.
    Dataset<Row> data = spark
      .read()
      .format("libsvm")
      .load("data/mllib/sample_libsvm_data.txt");

    // Index labels, adding metadata to the label column.
    // Fit on whole dataset to include all labels in index.
    StringIndexerModel labelIndexer = new StringIndexer()
      .setInputCol("label")
      .setOutputCol("indexedLabel")
      .fit(data);

    // Automatically identify categorical features, and index them.
    VectorIndexerModel featureIndexer = new VectorIndexer()
      .setInputCol("features")
      .setOutputCol("indexedFeatures")
      .setMaxCategories(4) // features with > 4 distinct values are treated as continuous.
      .fit(data);

    // Split the data into training and test sets (30% held out for testing).
    Dataset<Row>[] splits = data.randomSplit(new double[]{0.7, 0.3});
    Dataset<Row> trainingData = splits[0];
    Dataset<Row> testData = splits[1];

    // Train a DecisionTree model.
    DecisionTreeClassifier dt = new DecisionTreeClassifier()
      .setLabelCol("indexedLabel")
      .setFeaturesCol("indexedFeatures");

    // Convert indexed labels back to original labels.
    IndexToString labelConverter = new IndexToString()
      .setInputCol("prediction")
      .setOutputCol("predictedLabel")
      .setLabels(labelIndexer.labelsArray()[0]);

    // Chain indexers and tree in a Pipeline.
    Pipeline pipeline = new Pipeline()
      .setStages(new PipelineStage[]{labelIndexer, featureIndexer, dt, labelConverter});

    // Train model. This also runs the indexers.
    PipelineModel model = pipeline.fit(trainingData);

    // Make predictions.
    Dataset<Row> predictions = model.transform(testData);

    // Select example rows to display.
    predictions.select("predictedLabel", "label", "features").show(5);

    // Select (prediction, true label) and compute test error.
    MulticlassClassificationEvaluator evaluator = new MulticlassClassificationEvaluator()
      .setLabelCol("indexedLabel")
      .setPredictionCol("prediction")
      .setMetricName("accuracy");
    double accuracy = evaluator.evaluate(predictions);
    System.out.println("Test Error = " + (1.0 - accuracy));

    DecisionTreeClassificationModel treeModel =
      (DecisionTreeClassificationModel) (model.stages()[2]);
    System.out.println("Learned classification tree model:\n" + treeModel.toDebugString());
    // $example off$

    spark.stop();
  }
}

相关信息

spark 源码目录

相关文章

spark JavaAFTSurvivalRegressionExample 源码

spark JavaALSExample 源码

spark JavaBinarizerExample 源码

spark JavaBisectingKMeansExample 源码

spark JavaBucketedRandomProjectionLSHExample 源码

spark JavaBucketizerExample 源码

spark JavaChiSqSelectorExample 源码

spark JavaChiSquareTestExample 源码

spark JavaCorrelationExample 源码

spark JavaCountVectorizerExample 源码

0  赞