spark JavaALSExample 源码

  • 2022-10-20
  • 浏览 (354)

spark JavaALSExample 代码

文件路径:/examples/src/main/java/org/apache/spark/examples/ml/JavaALSExample.java

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.spark.examples.ml;

import org.apache.spark.sql.Dataset;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.SparkSession;

// $example on$
import java.io.Serializable;

import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.ml.evaluation.RegressionEvaluator;
import org.apache.spark.ml.recommendation.ALS;
import org.apache.spark.ml.recommendation.ALSModel;
// $example off$

public class JavaALSExample {

  // $example on$
  public static class Rating implements Serializable {
    private int userId;
    private int movieId;
    private float rating;
    private long timestamp;

    public Rating() {}

    public Rating(int userId, int movieId, float rating, long timestamp) {
      this.userId = userId;
      this.movieId = movieId;
      this.rating = rating;
      this.timestamp = timestamp;
    }

    public int getUserId() {
      return userId;
    }

    public int getMovieId() {
      return movieId;
    }

    public float getRating() {
      return rating;
    }

    public long getTimestamp() {
      return timestamp;
    }

    public static Rating parseRating(String str) {
      String[] fields = str.split("::");
      if (fields.length != 4) {
        throw new IllegalArgumentException("Each line must contain 4 fields");
      }
      int userId = Integer.parseInt(fields[0]);
      int movieId = Integer.parseInt(fields[1]);
      float rating = Float.parseFloat(fields[2]);
      long timestamp = Long.parseLong(fields[3]);
      return new Rating(userId, movieId, rating, timestamp);
    }
  }
  // $example off$

  public static void main(String[] args) {
    SparkSession spark = SparkSession
      .builder()
      .appName("JavaALSExample")
      .getOrCreate();

    // $example on$
    JavaRDD<Rating> ratingsRDD = spark
      .read().textFile("data/mllib/als/sample_movielens_ratings.txt").javaRDD()
      .map(Rating::parseRating);
    Dataset<Row> ratings = spark.createDataFrame(ratingsRDD, Rating.class);
    Dataset<Row>[] splits = ratings.randomSplit(new double[]{0.8, 0.2});
    Dataset<Row> training = splits[0];
    Dataset<Row> test = splits[1];

    // Build the recommendation model using ALS on the training data
    ALS als = new ALS()
      .setMaxIter(5)
      .setRegParam(0.01)
      .setUserCol("userId")
      .setItemCol("movieId")
      .setRatingCol("rating");
    ALSModel model = als.fit(training);

    // Evaluate the model by computing the RMSE on the test data
    // Note we set cold start strategy to 'drop' to ensure we don't get NaN evaluation metrics
    model.setColdStartStrategy("drop");
    Dataset<Row> predictions = model.transform(test);

    RegressionEvaluator evaluator = new RegressionEvaluator()
      .setMetricName("rmse")
      .setLabelCol("rating")
      .setPredictionCol("prediction");
    double rmse = evaluator.evaluate(predictions);
    System.out.println("Root-mean-square error = " + rmse);

    // Generate top 10 movie recommendations for each user
    Dataset<Row> userRecs = model.recommendForAllUsers(10);
    // Generate top 10 user recommendations for each movie
    Dataset<Row> movieRecs = model.recommendForAllItems(10);

    // Generate top 10 movie recommendations for a specified set of users
    Dataset<Row> users = ratings.select(als.getUserCol()).distinct().limit(3);
    Dataset<Row> userSubsetRecs = model.recommendForUserSubset(users, 10);
    // Generate top 10 user recommendations for a specified set of movies
    Dataset<Row> movies = ratings.select(als.getItemCol()).distinct().limit(3);
    Dataset<Row> movieSubSetRecs = model.recommendForItemSubset(movies, 10);
    // $example off$
    userRecs.show();
    movieRecs.show();
    userSubsetRecs.show();
    movieSubSetRecs.show();

    spark.stop();
  }
}

相关信息

spark 源码目录

相关文章

spark JavaAFTSurvivalRegressionExample 源码

spark JavaBinarizerExample 源码

spark JavaBisectingKMeansExample 源码

spark JavaBucketedRandomProjectionLSHExample 源码

spark JavaBucketizerExample 源码

spark JavaChiSqSelectorExample 源码

spark JavaChiSquareTestExample 源码

spark JavaCorrelationExample 源码

spark JavaCountVectorizerExample 源码

spark JavaDCTExample 源码

0  赞