spark JavaBucketedRandomProjectionLSHExample 源码

  • 2022-10-20
  • 浏览 (350)

spark JavaBucketedRandomProjectionLSHExample 代码

文件路径:/examples/src/main/java/org/apache/spark/examples/ml/JavaBucketedRandomProjectionLSHExample.java

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.spark.examples.ml;

import org.apache.spark.sql.SparkSession;

// $example on$
import java.util.Arrays;
import java.util.List;

import org.apache.spark.ml.feature.BucketedRandomProjectionLSH;
import org.apache.spark.ml.feature.BucketedRandomProjectionLSHModel;
import org.apache.spark.ml.linalg.Vector;
import org.apache.spark.ml.linalg.Vectors;
import org.apache.spark.ml.linalg.VectorUDT;
import org.apache.spark.sql.Dataset;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.RowFactory;
import org.apache.spark.sql.types.DataTypes;
import org.apache.spark.sql.types.Metadata;
import org.apache.spark.sql.types.StructField;
import org.apache.spark.sql.types.StructType;

import static org.apache.spark.sql.functions.col;
// $example off$

/**
 * An example demonstrating BucketedRandomProjectionLSH.
 * Run with:
 *   bin/run-example ml.JavaBucketedRandomProjectionLSHExample
 */
public class JavaBucketedRandomProjectionLSHExample {
  public static void main(String[] args) {
    SparkSession spark = SparkSession
      .builder()
      .appName("JavaBucketedRandomProjectionLSHExample")
      .getOrCreate();

    // $example on$
    List<Row> dataA = Arrays.asList(
      RowFactory.create(0, Vectors.dense(1.0, 1.0)),
      RowFactory.create(1, Vectors.dense(1.0, -1.0)),
      RowFactory.create(2, Vectors.dense(-1.0, -1.0)),
      RowFactory.create(3, Vectors.dense(-1.0, 1.0))
    );

    List<Row> dataB = Arrays.asList(
        RowFactory.create(4, Vectors.dense(1.0, 0.0)),
        RowFactory.create(5, Vectors.dense(-1.0, 0.0)),
        RowFactory.create(6, Vectors.dense(0.0, 1.0)),
        RowFactory.create(7, Vectors.dense(0.0, -1.0))
    );

    StructType schema = new StructType(new StructField[]{
      new StructField("id", DataTypes.IntegerType, false, Metadata.empty()),
      new StructField("features", new VectorUDT(), false, Metadata.empty())
    });
    Dataset<Row> dfA = spark.createDataFrame(dataA, schema);
    Dataset<Row> dfB = spark.createDataFrame(dataB, schema);

    Vector key = Vectors.dense(1.0, 0.0);

    BucketedRandomProjectionLSH mh = new BucketedRandomProjectionLSH()
      .setBucketLength(2.0)
      .setNumHashTables(3)
      .setInputCol("features")
      .setOutputCol("hashes");

    BucketedRandomProjectionLSHModel model = mh.fit(dfA);

    // Feature Transformation
    System.out.println("The hashed dataset where hashed values are stored in the column 'hashes':");
    model.transform(dfA).show();

    // Compute the locality sensitive hashes for the input rows, then perform approximate
    // similarity join.
    // We could avoid computing hashes by passing in the already-transformed dataset, e.g.
    // `model.approxSimilarityJoin(transformedA, transformedB, 1.5)`
    System.out.println("Approximately joining dfA and dfB on distance smaller than 1.5:");
    model.approxSimilarityJoin(dfA, dfB, 1.5, "EuclideanDistance")
      .select(col("datasetA.id").alias("idA"),
        col("datasetB.id").alias("idB"),
        col("EuclideanDistance")).show();

    // Compute the locality sensitive hashes for the input rows, then perform approximate nearest
    // neighbor search.
    // We could avoid computing hashes by passing in the already-transformed dataset, e.g.
    // `model.approxNearestNeighbors(transformedA, key, 2)`
    System.out.println("Approximately searching dfA for 2 nearest neighbors of the key:");
    model.approxNearestNeighbors(dfA, key, 2).show();
    // $example off$

    spark.stop();
  }
}

相关信息

spark 源码目录

相关文章

spark JavaAFTSurvivalRegressionExample 源码

spark JavaALSExample 源码

spark JavaBinarizerExample 源码

spark JavaBisectingKMeansExample 源码

spark JavaBucketizerExample 源码

spark JavaChiSqSelectorExample 源码

spark JavaChiSquareTestExample 源码

spark JavaCorrelationExample 源码

spark JavaCountVectorizerExample 源码

spark JavaDCTExample 源码

0  赞