spark JavaBucketedRandomProjectionLSHExample 源码
spark JavaBucketedRandomProjectionLSHExample 代码
文件路径:/examples/src/main/java/org/apache/spark/examples/ml/JavaBucketedRandomProjectionLSHExample.java
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.spark.examples.ml;
import org.apache.spark.sql.SparkSession;
// $example on$
import java.util.Arrays;
import java.util.List;
import org.apache.spark.ml.feature.BucketedRandomProjectionLSH;
import org.apache.spark.ml.feature.BucketedRandomProjectionLSHModel;
import org.apache.spark.ml.linalg.Vector;
import org.apache.spark.ml.linalg.Vectors;
import org.apache.spark.ml.linalg.VectorUDT;
import org.apache.spark.sql.Dataset;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.RowFactory;
import org.apache.spark.sql.types.DataTypes;
import org.apache.spark.sql.types.Metadata;
import org.apache.spark.sql.types.StructField;
import org.apache.spark.sql.types.StructType;
import static org.apache.spark.sql.functions.col;
// $example off$
/**
* An example demonstrating BucketedRandomProjectionLSH.
* Run with:
* bin/run-example ml.JavaBucketedRandomProjectionLSHExample
*/
public class JavaBucketedRandomProjectionLSHExample {
public static void main(String[] args) {
SparkSession spark = SparkSession
.builder()
.appName("JavaBucketedRandomProjectionLSHExample")
.getOrCreate();
// $example on$
List<Row> dataA = Arrays.asList(
RowFactory.create(0, Vectors.dense(1.0, 1.0)),
RowFactory.create(1, Vectors.dense(1.0, -1.0)),
RowFactory.create(2, Vectors.dense(-1.0, -1.0)),
RowFactory.create(3, Vectors.dense(-1.0, 1.0))
);
List<Row> dataB = Arrays.asList(
RowFactory.create(4, Vectors.dense(1.0, 0.0)),
RowFactory.create(5, Vectors.dense(-1.0, 0.0)),
RowFactory.create(6, Vectors.dense(0.0, 1.0)),
RowFactory.create(7, Vectors.dense(0.0, -1.0))
);
StructType schema = new StructType(new StructField[]{
new StructField("id", DataTypes.IntegerType, false, Metadata.empty()),
new StructField("features", new VectorUDT(), false, Metadata.empty())
});
Dataset<Row> dfA = spark.createDataFrame(dataA, schema);
Dataset<Row> dfB = spark.createDataFrame(dataB, schema);
Vector key = Vectors.dense(1.0, 0.0);
BucketedRandomProjectionLSH mh = new BucketedRandomProjectionLSH()
.setBucketLength(2.0)
.setNumHashTables(3)
.setInputCol("features")
.setOutputCol("hashes");
BucketedRandomProjectionLSHModel model = mh.fit(dfA);
// Feature Transformation
System.out.println("The hashed dataset where hashed values are stored in the column 'hashes':");
model.transform(dfA).show();
// Compute the locality sensitive hashes for the input rows, then perform approximate
// similarity join.
// We could avoid computing hashes by passing in the already-transformed dataset, e.g.
// `model.approxSimilarityJoin(transformedA, transformedB, 1.5)`
System.out.println("Approximately joining dfA and dfB on distance smaller than 1.5:");
model.approxSimilarityJoin(dfA, dfB, 1.5, "EuclideanDistance")
.select(col("datasetA.id").alias("idA"),
col("datasetB.id").alias("idB"),
col("EuclideanDistance")).show();
// Compute the locality sensitive hashes for the input rows, then perform approximate nearest
// neighbor search.
// We could avoid computing hashes by passing in the already-transformed dataset, e.g.
// `model.approxNearestNeighbors(transformedA, key, 2)`
System.out.println("Approximately searching dfA for 2 nearest neighbors of the key:");
model.approxNearestNeighbors(dfA, key, 2).show();
// $example off$
spark.stop();
}
}
相关信息
相关文章
spark JavaAFTSurvivalRegressionExample 源码
spark JavaBisectingKMeansExample 源码
spark JavaBucketizerExample 源码
spark JavaChiSqSelectorExample 源码
spark JavaChiSquareTestExample 源码
spark JavaCorrelationExample 源码
0
赞
热门推荐
-
2、 - 优质文章
-
3、 gate.io
-
8、 golang
-
9、 openharmony
-
10、 Vue中input框自动聚焦