spark JavaEstimatorTransformerParamExample 源码

  • 2022-10-20
  • 浏览 (346)

spark JavaEstimatorTransformerParamExample 代码

文件路径:/examples/src/main/java/org/apache/spark/examples/ml/JavaEstimatorTransformerParamExample.java

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.spark.examples.ml;

// $example on$
import java.util.Arrays;
import java.util.List;

import org.apache.spark.ml.classification.LogisticRegression;
import org.apache.spark.ml.classification.LogisticRegressionModel;
import org.apache.spark.ml.linalg.VectorUDT;
import org.apache.spark.ml.linalg.Vectors;
import org.apache.spark.ml.param.ParamMap;
import org.apache.spark.sql.Dataset;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.RowFactory;
import org.apache.spark.sql.types.DataTypes;
import org.apache.spark.sql.types.Metadata;
import org.apache.spark.sql.types.StructField;
import org.apache.spark.sql.types.StructType;
// $example off$
import org.apache.spark.sql.SparkSession;

/**
 * Java example for Estimator, Transformer, and Param.
 */
public class JavaEstimatorTransformerParamExample {
  public static void main(String[] args) {
    SparkSession spark = SparkSession
      .builder()
      .appName("JavaEstimatorTransformerParamExample")
      .getOrCreate();

    // $example on$
    // Prepare training data.
    List<Row> dataTraining = Arrays.asList(
        RowFactory.create(1.0, Vectors.dense(0.0, 1.1, 0.1)),
        RowFactory.create(0.0, Vectors.dense(2.0, 1.0, -1.0)),
        RowFactory.create(0.0, Vectors.dense(2.0, 1.3, 1.0)),
        RowFactory.create(1.0, Vectors.dense(0.0, 1.2, -0.5))
    );
    StructType schema = new StructType(new StructField[]{
        new StructField("label", DataTypes.DoubleType, false, Metadata.empty()),
        new StructField("features", new VectorUDT(), false, Metadata.empty())
    });
    Dataset<Row> training = spark.createDataFrame(dataTraining, schema);

    // Create a LogisticRegression instance. This instance is an Estimator.
    LogisticRegression lr = new LogisticRegression();
    // Print out the parameters, documentation, and any default values.
    System.out.println("LogisticRegression parameters:\n" + lr.explainParams() + "\n");

    // We may set parameters using setter methods.
    lr.setMaxIter(10).setRegParam(0.01);

    // Learn a LogisticRegression model. This uses the parameters stored in lr.
    LogisticRegressionModel model1 = lr.fit(training);
    // Since model1 is a Model (i.e., a Transformer produced by an Estimator),
    // we can view the parameters it used during fit().
    // This prints the parameter (name: value) pairs, where names are unique IDs for this
    // LogisticRegression instance.
    System.out.println("Model 1 was fit using parameters: " + model1.parent().extractParamMap());

    // We may alternatively specify parameters using a ParamMap.
    ParamMap paramMap = new ParamMap()
      .put(lr.maxIter().w(20))  // Specify 1 Param.
      .put(lr.maxIter(), 30)  // This overwrites the original maxIter.
      .put(lr.regParam().w(0.1), lr.threshold().w(0.55));  // Specify multiple Params.

    // One can also combine ParamMaps.
    ParamMap paramMap2 = new ParamMap()
      .put(lr.probabilityCol().w("myProbability"));  // Change output column name
    ParamMap paramMapCombined = paramMap.$plus$plus(paramMap2);

    // Now learn a new model using the paramMapCombined parameters.
    // paramMapCombined overrides all parameters set earlier via lr.set* methods.
    LogisticRegressionModel model2 = lr.fit(training, paramMapCombined);
    System.out.println("Model 2 was fit using parameters: " + model2.parent().extractParamMap());

    // Prepare test documents.
    List<Row> dataTest = Arrays.asList(
        RowFactory.create(1.0, Vectors.dense(-1.0, 1.5, 1.3)),
        RowFactory.create(0.0, Vectors.dense(3.0, 2.0, -0.1)),
        RowFactory.create(1.0, Vectors.dense(0.0, 2.2, -1.5))
    );
    Dataset<Row> test = spark.createDataFrame(dataTest, schema);

    // Make predictions on test documents using the Transformer.transform() method.
    // LogisticRegression.transform will only use the 'features' column.
    // Note that model2.transform() outputs a 'myProbability' column instead of the usual
    // 'probability' column since we renamed the lr.probabilityCol parameter previously.
    Dataset<Row> results = model2.transform(test);
    Dataset<Row> rows = results.select("features", "label", "myProbability", "prediction");
    for (Row r: rows.collectAsList()) {
      System.out.println("(" + r.get(0) + ", " + r.get(1) + ") -> prob=" + r.get(2)
        + ", prediction=" + r.get(3));
    }
    // $example off$

    spark.stop();
  }
}

相关信息

spark 源码目录

相关文章

spark JavaAFTSurvivalRegressionExample 源码

spark JavaALSExample 源码

spark JavaBinarizerExample 源码

spark JavaBisectingKMeansExample 源码

spark JavaBucketedRandomProjectionLSHExample 源码

spark JavaBucketizerExample 源码

spark JavaChiSqSelectorExample 源码

spark JavaChiSquareTestExample 源码

spark JavaCorrelationExample 源码

spark JavaCountVectorizerExample 源码

0  赞