spark FlatMapCoGroupsInPandasExec 源码

  • 2022-10-20
  • 浏览 (185)

spark FlatMapCoGroupsInPandasExec 代码

文件路径:/sql/core/src/main/scala/org/apache/spark/sql/execution/python/FlatMapCoGroupsInPandasExec.scala

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.spark.sql.execution.python

import org.apache.spark.api.python.{ChainedPythonFunctions, PythonEvalType}
import org.apache.spark.rdd.RDD
import org.apache.spark.sql.catalyst.InternalRow
import org.apache.spark.sql.catalyst.expressions._
import org.apache.spark.sql.catalyst.plans.physical.{AllTuples, ClusteredDistribution, Distribution, Partitioning}
import org.apache.spark.sql.execution.{BinaryExecNode, CoGroupedIterator, SparkPlan}
import org.apache.spark.sql.execution.python.PandasGroupUtils._
import org.apache.spark.sql.types.StructType
import org.apache.spark.sql.util.ArrowUtils


/**
 * Physical node for [[org.apache.spark.sql.catalyst.plans.logical.FlatMapCoGroupsInPandas]]
 *
 * The input dataframes are first Cogrouped.  Rows from each side of the cogroup are passed to the
 * Python worker via Arrow.  As each side of the cogroup may have a different schema we send every
 * group in its own Arrow stream.
 * The Python worker turns the resulting record batches to `pandas.DataFrame`s, invokes the
 * user-defined function, and passes the resulting `pandas.DataFrame`
 * as an Arrow record batch. Finally, each record batch is turned to
 * Iterator[InternalRow] using ColumnarBatch.
 *
 * Note on memory usage:
 * Both the Python worker and the Java executor need to have enough memory to
 * hold the largest cogroup. The memory on the Java side is used to construct the
 * record batches (off heap memory). The memory on the Python side is used for
 * holding the `pandas.DataFrame`. It's possible to further split one group into
 * multiple record batches to reduce the memory footprint on the Java side, this
 * is left as future work.
 */
case class FlatMapCoGroupsInPandasExec(
    leftGroup: Seq[Attribute],
    rightGroup: Seq[Attribute],
    func: Expression,
    output: Seq[Attribute],
    left: SparkPlan,
    right: SparkPlan)
  extends SparkPlan with BinaryExecNode {

  private val sessionLocalTimeZone = conf.sessionLocalTimeZone
  private val pythonRunnerConf = ArrowUtils.getPythonRunnerConfMap(conf)
  private val pandasFunction = func.asInstanceOf[PythonUDF].func
  private val chainedFunc = Seq(ChainedPythonFunctions(Seq(pandasFunction)))

  override def producedAttributes: AttributeSet = AttributeSet(output)

  override def outputPartitioning: Partitioning = left.outputPartitioning

  override def requiredChildDistribution: Seq[Distribution] = {
    val leftDist = if (leftGroup.isEmpty) AllTuples else ClusteredDistribution(leftGroup)
    val rightDist = if (rightGroup.isEmpty) AllTuples else ClusteredDistribution(rightGroup)
    leftDist :: rightDist :: Nil
  }

  override def requiredChildOrdering: Seq[Seq[SortOrder]] = {
    leftGroup
      .map(SortOrder(_, Ascending)) :: rightGroup.map(SortOrder(_, Ascending)) :: Nil
  }

  override protected def doExecute(): RDD[InternalRow] = {

    val (leftDedup, leftArgOffsets) = resolveArgOffsets(left.output, leftGroup)
    val (rightDedup, rightArgOffsets) = resolveArgOffsets(right.output, rightGroup)

    // Map cogrouped rows to ArrowPythonRunner results, Only execute if partition is not empty
    left.execute().zipPartitions(right.execute())  { (leftData, rightData) =>
      if (leftData.isEmpty && rightData.isEmpty) Iterator.empty else {

        val leftGrouped = groupAndProject(leftData, leftGroup, left.output, leftDedup)
        val rightGrouped = groupAndProject(rightData, rightGroup, right.output, rightDedup)
        val data = new CoGroupedIterator(leftGrouped, rightGrouped, leftGroup)
          .map { case (_, l, r) => (l, r) }

        val runner = new CoGroupedArrowPythonRunner(
          chainedFunc,
          PythonEvalType.SQL_COGROUPED_MAP_PANDAS_UDF,
          Array(leftArgOffsets ++ rightArgOffsets),
          StructType.fromAttributes(leftDedup),
          StructType.fromAttributes(rightDedup),
          sessionLocalTimeZone,
          pythonRunnerConf)

        executePython(data, output, runner)
      }
    }
  }

  override protected def withNewChildrenInternal(
      newLeft: SparkPlan, newRight: SparkPlan): FlatMapCoGroupsInPandasExec =
    copy(left = newLeft, right = newRight)
}

相关信息

spark 源码目录

相关文章

spark AggregateInPandasExec 源码

spark ApplyInPandasWithStatePythonRunner 源码

spark ApplyInPandasWithStateWriter 源码

spark ArrowEvalPythonExec 源码

spark ArrowPythonRunner 源码

spark AttachDistributedSequenceExec 源码

spark BatchEvalPythonExec 源码

spark CoGroupedArrowPythonRunner 源码

spark EvalPythonExec 源码

spark EvaluatePython 源码

0  赞