spark PythonArrowOutput 源码

  • 2022-10-20
  • 浏览 (180)

spark PythonArrowOutput 代码

文件路径:/sql/core/src/main/scala/org/apache/spark/sql/execution/python/PythonArrowOutput.scala

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.spark.sql.execution.python

import java.io.DataInputStream
import java.net.Socket
import java.util.concurrent.atomic.AtomicBoolean

import scala.collection.JavaConverters._

import org.apache.arrow.vector.VectorSchemaRoot
import org.apache.arrow.vector.ipc.ArrowStreamReader

import org.apache.spark.{SparkEnv, TaskContext}
import org.apache.spark.api.python.{BasePythonRunner, SpecialLengths}
import org.apache.spark.sql.types.StructType
import org.apache.spark.sql.util.ArrowUtils
import org.apache.spark.sql.vectorized.{ArrowColumnVector, ColumnarBatch, ColumnVector}

/**
 * A trait that can be mixed-in with [[BasePythonRunner]]. It implements the logic from
 * Python (Arrow) to JVM (output type being deserialized from ColumnarBatch).
 */
private[python] trait PythonArrowOutput[OUT <: AnyRef] { self: BasePythonRunner[_, OUT] =>

  protected def handleMetadataAfterExec(stream: DataInputStream): Unit = { }

  protected def deserializeColumnarBatch(batch: ColumnarBatch, schema: StructType): OUT

  protected def newReaderIterator(
      stream: DataInputStream,
      writerThread: WriterThread,
      startTime: Long,
      env: SparkEnv,
      worker: Socket,
      pid: Option[Int],
      releasedOrClosed: AtomicBoolean,
      context: TaskContext): Iterator[OUT] = {

    new ReaderIterator(
      stream, writerThread, startTime, env, worker, pid, releasedOrClosed, context) {

      private val allocator = ArrowUtils.rootAllocator.newChildAllocator(
        s"stdin reader for $pythonExec", 0, Long.MaxValue)

      private var reader: ArrowStreamReader = _
      private var root: VectorSchemaRoot = _
      private var schema: StructType = _
      private var vectors: Array[ColumnVector] = _

      context.addTaskCompletionListener[Unit] { _ =>
        if (reader != null) {
          reader.close(false)
        }
        allocator.close()
      }

      private var batchLoaded = true

      protected override def handleEndOfDataSection(): Unit = {
        handleMetadataAfterExec(stream)
        super.handleEndOfDataSection()
      }

      protected override def read(): OUT = {
        if (writerThread.exception.isDefined) {
          throw writerThread.exception.get
        }
        try {
          if (reader != null && batchLoaded) {
            batchLoaded = reader.loadNextBatch()
            if (batchLoaded) {
              val batch = new ColumnarBatch(vectors)
              batch.setNumRows(root.getRowCount)
              deserializeColumnarBatch(batch, schema)
            } else {
              reader.close(false)
              allocator.close()
              // Reach end of stream. Call `read()` again to read control data.
              read()
            }
          } else {
            stream.readInt() match {
              case SpecialLengths.START_ARROW_STREAM =>
                reader = new ArrowStreamReader(stream, allocator)
                root = reader.getVectorSchemaRoot()
                schema = ArrowUtils.fromArrowSchema(root.getSchema())
                vectors = root.getFieldVectors().asScala.map { vector =>
                  new ArrowColumnVector(vector)
                }.toArray[ColumnVector]
                read()
              case SpecialLengths.TIMING_DATA =>
                handleTimingData()
                read()
              case SpecialLengths.PYTHON_EXCEPTION_THROWN =>
                throw handlePythonException()
              case SpecialLengths.END_OF_DATA_SECTION =>
                handleEndOfDataSection()
                null.asInstanceOf[OUT]
            }
          }
        } catch handleException
      }
    }
  }
}

private[python] trait BasicPythonArrowOutput extends PythonArrowOutput[ColumnarBatch] {
  self: BasePythonRunner[_, ColumnarBatch] =>

  protected def deserializeColumnarBatch(
      batch: ColumnarBatch,
      schema: StructType): ColumnarBatch = batch
}

相关信息

spark 源码目录

相关文章

spark AggregateInPandasExec 源码

spark ApplyInPandasWithStatePythonRunner 源码

spark ApplyInPandasWithStateWriter 源码

spark ArrowEvalPythonExec 源码

spark ArrowPythonRunner 源码

spark AttachDistributedSequenceExec 源码

spark BatchEvalPythonExec 源码

spark CoGroupedArrowPythonRunner 源码

spark EvalPythonExec 源码

spark EvaluatePython 源码

0  赞