tidb rule_column_pruning 源码
tidb rule_column_pruning 代码
文件路径:/planner/core/rule_column_pruning.go
// Copyright 2016 PingCAP, Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package core
import (
"bytes"
"context"
"fmt"
"github.com/pingcap/tidb/expression"
"github.com/pingcap/tidb/expression/aggregation"
"github.com/pingcap/tidb/infoschema"
"github.com/pingcap/tidb/parser/ast"
"github.com/pingcap/tidb/parser/model"
"github.com/pingcap/tidb/parser/mysql"
"github.com/pingcap/tidb/planner/util"
)
type columnPruner struct {
}
func (s *columnPruner) optimize(_ context.Context, lp LogicalPlan, opt *logicalOptimizeOp) (LogicalPlan, error) {
err := lp.PruneColumns(lp.Schema().Columns, opt)
return lp, err
}
// ExprsHasSideEffects checks if any of the expressions has side effects.
func ExprsHasSideEffects(exprs []expression.Expression) bool {
for _, expr := range exprs {
if exprHasSetVarOrSleep(expr) {
return true
}
}
return false
}
// exprHasSetVarOrSleep checks if the expression has SetVar function or Sleep function.
func exprHasSetVarOrSleep(expr expression.Expression) bool {
scalaFunc, isScalaFunc := expr.(*expression.ScalarFunction)
if !isScalaFunc {
return false
}
if scalaFunc.FuncName.L == ast.SetVar || scalaFunc.FuncName.L == ast.Sleep {
return true
}
for _, arg := range scalaFunc.GetArgs() {
if exprHasSetVarOrSleep(arg) {
return true
}
}
return false
}
// PruneColumns implements LogicalPlan interface.
// If any expression has SetVar function or Sleep function, we do not prune it.
func (p *LogicalProjection) PruneColumns(parentUsedCols []*expression.Column, opt *logicalOptimizeOp) error {
child := p.children[0]
used := expression.GetUsedList(parentUsedCols, p.schema)
prunedColumns := make([]*expression.Column, 0)
for i := len(used) - 1; i >= 0; i-- {
if !used[i] && !exprHasSetVarOrSleep(p.Exprs[i]) {
prunedColumns = append(prunedColumns, p.schema.Columns[i])
p.schema.Columns = append(p.schema.Columns[:i], p.schema.Columns[i+1:]...)
p.Exprs = append(p.Exprs[:i], p.Exprs[i+1:]...)
}
}
appendColumnPruneTraceStep(p, prunedColumns, opt)
selfUsedCols := make([]*expression.Column, 0, len(p.Exprs))
selfUsedCols = expression.ExtractColumnsFromExpressions(selfUsedCols, p.Exprs, nil)
return child.PruneColumns(selfUsedCols, opt)
}
// PruneColumns implements LogicalPlan interface.
func (p *LogicalSelection) PruneColumns(parentUsedCols []*expression.Column, opt *logicalOptimizeOp) error {
child := p.children[0]
parentUsedCols = expression.ExtractColumnsFromExpressions(parentUsedCols, p.Conditions, nil)
return child.PruneColumns(parentUsedCols, opt)
}
// PruneColumns implements LogicalPlan interface.
func (la *LogicalAggregation) PruneColumns(parentUsedCols []*expression.Column, opt *logicalOptimizeOp) error {
child := la.children[0]
used := expression.GetUsedList(parentUsedCols, la.Schema())
prunedColumns := make([]*expression.Column, 0)
prunedFunctions := make([]*aggregation.AggFuncDesc, 0)
prunedGroupByItems := make([]expression.Expression, 0)
allFirstRow := true
allRemainFirstRow := true
for i := len(used) - 1; i >= 0; i-- {
if la.AggFuncs[i].Name != ast.AggFuncFirstRow {
allFirstRow = false
}
if !used[i] && !ExprsHasSideEffects(la.AggFuncs[i].Args) {
prunedColumns = append(prunedColumns, la.schema.Columns[i])
prunedFunctions = append(prunedFunctions, la.AggFuncs[i])
la.schema.Columns = append(la.schema.Columns[:i], la.schema.Columns[i+1:]...)
la.AggFuncs = append(la.AggFuncs[:i], la.AggFuncs[i+1:]...)
} else if la.AggFuncs[i].Name != ast.AggFuncFirstRow {
allRemainFirstRow = false
}
}
appendColumnPruneTraceStep(la, prunedColumns, opt)
appendFunctionPruneTraceStep(la, prunedFunctions, opt)
//nolint: prealloc
var selfUsedCols []*expression.Column
for _, aggrFunc := range la.AggFuncs {
selfUsedCols = expression.ExtractColumnsFromExpressions(selfUsedCols, aggrFunc.Args, nil)
var cols []*expression.Column
aggrFunc.OrderByItems, cols = pruneByItems(la, aggrFunc.OrderByItems, opt)
selfUsedCols = append(selfUsedCols, cols...)
}
if len(la.AggFuncs) == 0 || (!allFirstRow && allRemainFirstRow) {
// If all the aggregate functions are pruned, we should add an aggregate function to maintain the info of row numbers.
// For all the aggregate functions except `first_row`, if we have an empty table defined as t(a,b),
// `select agg(a) from t` would always return one row, while `select agg(a) from t group by b` would return empty.
// For `first_row` which is only used internally by tidb, `first_row(a)` would always return empty for empty input now.
var err error
var newAgg *aggregation.AggFuncDesc
if allFirstRow {
newAgg, err = aggregation.NewAggFuncDesc(la.ctx, ast.AggFuncFirstRow, []expression.Expression{expression.NewOne()}, false)
} else {
newAgg, err = aggregation.NewAggFuncDesc(la.ctx, ast.AggFuncCount, []expression.Expression{expression.NewOne()}, false)
}
if err != nil {
return err
}
la.AggFuncs = append(la.AggFuncs, newAgg)
col := &expression.Column{
UniqueID: la.ctx.GetSessionVars().AllocPlanColumnID(),
RetType: newAgg.RetTp,
}
la.schema.Columns = append(la.schema.Columns, col)
}
if len(la.GroupByItems) > 0 {
for i := len(la.GroupByItems) - 1; i >= 0; i-- {
cols := expression.ExtractColumns(la.GroupByItems[i])
if len(cols) == 0 && !exprHasSetVarOrSleep(la.GroupByItems[i]) {
prunedGroupByItems = append(prunedGroupByItems, la.GroupByItems[i])
la.GroupByItems = append(la.GroupByItems[:i], la.GroupByItems[i+1:]...)
} else {
selfUsedCols = append(selfUsedCols, cols...)
}
}
// If all the group by items are pruned, we should add a constant 1 to keep the correctness.
// Because `select count(*) from t` is different from `select count(*) from t group by 1`.
if len(la.GroupByItems) == 0 {
la.GroupByItems = []expression.Expression{expression.NewOne()}
}
}
appendGroupByItemsPruneTraceStep(la, prunedGroupByItems, opt)
err := child.PruneColumns(selfUsedCols, opt)
if err != nil {
return err
}
// Do an extra Projection Elimination here. This is specially for empty Projection below Aggregation.
// This kind of Projection would cause some bugs for MPP plan and is safe to be removed.
// This kind of Projection should be removed in Projection Elimination, but currently PrunColumnsAgain is
// the last rule. So we specially handle this case here.
if childProjection, isProjection := child.(*LogicalProjection); isProjection {
if len(childProjection.Exprs) == 0 && childProjection.Schema().Len() == 0 {
childOfChild := childProjection.children[0]
la.SetChildren(childOfChild)
}
}
return nil
}
func pruneByItems(p LogicalPlan, old []*util.ByItems, opt *logicalOptimizeOp) (byItems []*util.ByItems,
parentUsedCols []*expression.Column) {
prunedByItems := make([]*util.ByItems, 0)
byItems = make([]*util.ByItems, 0, len(old))
seen := make(map[string]struct{}, len(old))
for _, byItem := range old {
pruned := true
hash := string(byItem.Expr.HashCode(nil))
_, hashMatch := seen[hash]
seen[hash] = struct{}{}
cols := expression.ExtractColumns(byItem.Expr)
if hashMatch {
// do nothing, should be filtered
} else if len(cols) == 0 {
if !expression.IsRuntimeConstExpr(byItem.Expr) {
pruned = false
byItems = append(byItems, byItem)
}
} else if byItem.Expr.GetType().GetType() == mysql.TypeNull {
// do nothing, should be filtered
} else {
pruned = false
parentUsedCols = append(parentUsedCols, cols...)
byItems = append(byItems, byItem)
}
if pruned {
prunedByItems = append(prunedByItems, byItem)
}
}
appendByItemsPruneTraceStep(p, prunedByItems, opt)
return
}
// PruneColumns implements LogicalPlan interface.
// If any expression can view as a constant in execution stage, such as correlated column, constant,
// we do prune them. Note that we can't prune the expressions contain non-deterministic functions, such as rand().
func (ls *LogicalSort) PruneColumns(parentUsedCols []*expression.Column, opt *logicalOptimizeOp) error {
child := ls.children[0]
var cols []*expression.Column
ls.ByItems, cols = pruneByItems(ls, ls.ByItems, opt)
parentUsedCols = append(parentUsedCols, cols...)
return child.PruneColumns(parentUsedCols, opt)
}
// PruneColumns implements LogicalPlan interface.
// If any expression can view as a constant in execution stage, such as correlated column, constant,
// we do prune them. Note that we can't prune the expressions contain non-deterministic functions, such as rand().
func (lt *LogicalTopN) PruneColumns(parentUsedCols []*expression.Column, opt *logicalOptimizeOp) error {
child := lt.children[0]
var cols []*expression.Column
lt.ByItems, cols = pruneByItems(lt, lt.ByItems, opt)
parentUsedCols = append(parentUsedCols, cols...)
return child.PruneColumns(parentUsedCols, opt)
}
// PruneColumns implements LogicalPlan interface.
func (p *LogicalUnionAll) PruneColumns(parentUsedCols []*expression.Column, opt *logicalOptimizeOp) error {
used := expression.GetUsedList(parentUsedCols, p.schema)
hasBeenUsed := false
for i := range used {
hasBeenUsed = hasBeenUsed || used[i]
if hasBeenUsed {
break
}
}
if !hasBeenUsed {
parentUsedCols = make([]*expression.Column, len(p.schema.Columns))
copy(parentUsedCols, p.schema.Columns)
}
for _, child := range p.Children() {
err := child.PruneColumns(parentUsedCols, opt)
if err != nil {
return err
}
}
prunedColumns := make([]*expression.Column, 0)
if hasBeenUsed {
// keep the schema of LogicalUnionAll same as its children's
used := expression.GetUsedList(p.children[0].Schema().Columns, p.schema)
for i := len(used) - 1; i >= 0; i-- {
if !used[i] {
prunedColumns = append(prunedColumns, p.schema.Columns[i])
p.schema.Columns = append(p.schema.Columns[:i], p.schema.Columns[i+1:]...)
}
}
appendColumnPruneTraceStep(p, prunedColumns, opt)
// It's possible that the child operator adds extra columns to the schema.
// Currently, (*LogicalAggregation).PruneColumns() might do this.
// But we don't need such columns, so we add an extra Projection to prune this column when this happened.
for i, child := range p.Children() {
if p.schema.Len() < child.Schema().Len() {
schema := p.schema.Clone()
exprs := make([]expression.Expression, len(p.schema.Columns))
for j, col := range schema.Columns {
exprs[j] = col
}
proj := LogicalProjection{Exprs: exprs, AvoidColumnEvaluator: true}.Init(p.ctx, p.blockOffset)
proj.SetSchema(schema)
proj.SetChildren(child)
p.children[i] = proj
}
}
}
return nil
}
// PruneColumns implements LogicalPlan interface.
func (p *LogicalUnionScan) PruneColumns(parentUsedCols []*expression.Column, opt *logicalOptimizeOp) error {
for i := 0; i < p.handleCols.NumCols(); i++ {
parentUsedCols = append(parentUsedCols, p.handleCols.GetCol(i))
}
for _, col := range p.Schema().Columns {
if col.ID == model.ExtraPidColID || col.ID == model.ExtraPhysTblID {
parentUsedCols = append(parentUsedCols, col)
}
}
condCols := expression.ExtractColumnsFromExpressions(nil, p.conditions, nil)
parentUsedCols = append(parentUsedCols, condCols...)
return p.children[0].PruneColumns(parentUsedCols, opt)
}
// PruneColumns implements LogicalPlan interface.
func (ds *DataSource) PruneColumns(parentUsedCols []*expression.Column, opt *logicalOptimizeOp) error {
used := expression.GetUsedList(parentUsedCols, ds.schema)
exprCols := expression.ExtractColumnsFromExpressions(nil, ds.allConds, nil)
exprUsed := expression.GetUsedList(exprCols, ds.schema)
prunedColumns := make([]*expression.Column, 0)
originSchemaColumns := ds.schema.Columns
originColumns := ds.Columns
for i := len(used) - 1; i >= 0; i-- {
if !used[i] && !exprUsed[i] {
// If ds has a shard index, and the column is generated column by `tidb_shard()`
// it can't prune the generated column of shard index
if ds.containExprPrefixUk &&
expression.GcColumnExprIsTidbShard(ds.schema.Columns[i].VirtualExpr) {
continue
}
prunedColumns = append(prunedColumns, ds.schema.Columns[i])
ds.schema.Columns = append(ds.schema.Columns[:i], ds.schema.Columns[i+1:]...)
ds.Columns = append(ds.Columns[:i], ds.Columns[i+1:]...)
}
}
appendColumnPruneTraceStep(ds, prunedColumns, opt)
// For SQL like `select 1 from t`, tikv's response will be empty if no column is in schema.
// So we'll force to push one if schema doesn't have any column.
if ds.schema.Len() == 0 {
var handleCol *expression.Column
var handleColInfo *model.ColumnInfo
if ds.table.Type().IsClusterTable() && len(originColumns) > 0 {
// use the first line.
handleCol = originSchemaColumns[0]
handleColInfo = originColumns[0]
} else {
if ds.handleCols != nil {
handleCol = ds.handleCols.GetCol(0)
handleColInfo = handleCol.ToInfo()
} else {
handleCol = ds.newExtraHandleSchemaCol()
handleColInfo = model.NewExtraHandleColInfo()
}
}
ds.Columns = append(ds.Columns, handleColInfo)
ds.schema.Append(handleCol)
}
if ds.handleCols != nil && ds.handleCols.IsInt() && ds.schema.ColumnIndex(ds.handleCols.GetCol(0)) == -1 {
ds.handleCols = nil
}
return nil
}
// PruneColumns implements LogicalPlan interface.
func (p *LogicalMemTable) PruneColumns(parentUsedCols []*expression.Column, opt *logicalOptimizeOp) error {
switch p.TableInfo.Name.O {
case infoschema.TableStatementsSummary,
infoschema.TableStatementsSummaryHistory,
infoschema.TableSlowQuery,
infoschema.ClusterTableStatementsSummary,
infoschema.ClusterTableStatementsSummaryHistory,
infoschema.ClusterTableSlowLog,
infoschema.TableTiDBTrx,
infoschema.ClusterTableTiDBTrx,
infoschema.TableDataLockWaits,
infoschema.TableDeadlocks,
infoschema.ClusterTableDeadlocks:
default:
return nil
}
prunedColumns := make([]*expression.Column, 0)
used := expression.GetUsedList(parentUsedCols, p.schema)
for i := len(used) - 1; i >= 0; i-- {
if !used[i] && p.schema.Len() > 1 {
prunedColumns = append(prunedColumns, p.schema.Columns[i])
p.schema.Columns = append(p.schema.Columns[:i], p.schema.Columns[i+1:]...)
p.names = append(p.names[:i], p.names[i+1:]...)
p.Columns = append(p.Columns[:i], p.Columns[i+1:]...)
}
}
appendColumnPruneTraceStep(p, prunedColumns, opt)
return nil
}
// PruneColumns implements LogicalPlan interface.
func (p *LogicalTableDual) PruneColumns(parentUsedCols []*expression.Column, opt *logicalOptimizeOp) error {
used := expression.GetUsedList(parentUsedCols, p.Schema())
prunedColumns := make([]*expression.Column, 0)
for i := len(used) - 1; i >= 0; i-- {
if !used[i] {
prunedColumns = append(prunedColumns, p.schema.Columns[i])
p.schema.Columns = append(p.schema.Columns[:i], p.schema.Columns[i+1:]...)
}
}
appendColumnPruneTraceStep(p, prunedColumns, opt)
return nil
}
func (p *LogicalJoin) extractUsedCols(parentUsedCols []*expression.Column) (leftCols []*expression.Column, rightCols []*expression.Column) {
for _, eqCond := range p.EqualConditions {
parentUsedCols = append(parentUsedCols, expression.ExtractColumns(eqCond)...)
}
for _, leftCond := range p.LeftConditions {
parentUsedCols = append(parentUsedCols, expression.ExtractColumns(leftCond)...)
}
for _, rightCond := range p.RightConditions {
parentUsedCols = append(parentUsedCols, expression.ExtractColumns(rightCond)...)
}
for _, otherCond := range p.OtherConditions {
parentUsedCols = append(parentUsedCols, expression.ExtractColumns(otherCond)...)
}
lChild := p.children[0]
rChild := p.children[1]
for _, col := range parentUsedCols {
if lChild.Schema().Contains(col) {
leftCols = append(leftCols, col)
} else if rChild.Schema().Contains(col) {
rightCols = append(rightCols, col)
}
}
return leftCols, rightCols
}
func (p *LogicalJoin) mergeSchema() {
p.schema = buildLogicalJoinSchema(p.JoinType, p)
}
// PruneColumns implements LogicalPlan interface.
func (p *LogicalJoin) PruneColumns(parentUsedCols []*expression.Column, opt *logicalOptimizeOp) error {
leftCols, rightCols := p.extractUsedCols(parentUsedCols)
err := p.children[0].PruneColumns(leftCols, opt)
if err != nil {
return err
}
addConstOneForEmptyProjection(p.children[0])
err = p.children[1].PruneColumns(rightCols, opt)
if err != nil {
return err
}
addConstOneForEmptyProjection(p.children[1])
p.mergeSchema()
if p.JoinType == LeftOuterSemiJoin || p.JoinType == AntiLeftOuterSemiJoin {
joinCol := p.schema.Columns[len(p.schema.Columns)-1]
parentUsedCols = append(parentUsedCols, joinCol)
}
p.inlineProjection(parentUsedCols, opt)
return nil
}
// PruneColumns implements LogicalPlan interface.
func (la *LogicalApply) PruneColumns(parentUsedCols []*expression.Column, opt *logicalOptimizeOp) error {
leftCols, rightCols := la.extractUsedCols(parentUsedCols)
err := la.children[1].PruneColumns(rightCols, opt)
if err != nil {
return err
}
addConstOneForEmptyProjection(la.children[1])
la.CorCols = extractCorColumnsBySchema4LogicalPlan(la.children[1], la.children[0].Schema())
for _, col := range la.CorCols {
leftCols = append(leftCols, &col.Column)
}
err = la.children[0].PruneColumns(leftCols, opt)
if err != nil {
return err
}
addConstOneForEmptyProjection(la.children[0])
la.mergeSchema()
return nil
}
// PruneColumns implements LogicalPlan interface.
func (p *LogicalLock) PruneColumns(parentUsedCols []*expression.Column, opt *logicalOptimizeOp) error {
if !IsSelectForUpdateLockType(p.Lock.LockType) {
return p.baseLogicalPlan.PruneColumns(parentUsedCols, opt)
}
for tblID, cols := range p.tblID2Handle {
for _, col := range cols {
for i := 0; i < col.NumCols(); i++ {
parentUsedCols = append(parentUsedCols, col.GetCol(i))
}
}
if physTblIDCol, ok := p.tblID2PhysTblIDCol[tblID]; ok {
// If the children include partitioned tables, there is an extra partition ID column.
parentUsedCols = append(parentUsedCols, physTblIDCol)
}
}
return p.children[0].PruneColumns(parentUsedCols, opt)
}
// PruneColumns implements LogicalPlan interface.
func (p *LogicalWindow) PruneColumns(parentUsedCols []*expression.Column, opt *logicalOptimizeOp) error {
windowColumns := p.GetWindowResultColumns()
cnt := 0
for _, col := range parentUsedCols {
used := false
for _, windowColumn := range windowColumns {
if windowColumn.Equal(nil, col) {
used = true
break
}
}
if !used {
parentUsedCols[cnt] = col
cnt++
}
}
parentUsedCols = parentUsedCols[:cnt]
parentUsedCols = p.extractUsedCols(parentUsedCols)
err := p.children[0].PruneColumns(parentUsedCols, opt)
if err != nil {
return err
}
p.SetSchema(p.children[0].Schema().Clone())
p.Schema().Append(windowColumns...)
return nil
}
func (p *LogicalWindow) extractUsedCols(parentUsedCols []*expression.Column) []*expression.Column {
for _, desc := range p.WindowFuncDescs {
for _, arg := range desc.Args {
parentUsedCols = append(parentUsedCols, expression.ExtractColumns(arg)...)
}
}
for _, by := range p.PartitionBy {
parentUsedCols = append(parentUsedCols, by.Col)
}
for _, by := range p.OrderBy {
parentUsedCols = append(parentUsedCols, by.Col)
}
return parentUsedCols
}
// PruneColumns implements LogicalPlan interface.
func (p *LogicalLimit) PruneColumns(parentUsedCols []*expression.Column, opt *logicalOptimizeOp) error {
if len(parentUsedCols) == 0 { // happens when LIMIT appears in UPDATE.
return nil
}
savedUsedCols := make([]*expression.Column, len(parentUsedCols))
copy(savedUsedCols, parentUsedCols)
if err := p.children[0].PruneColumns(parentUsedCols, opt); err != nil {
return err
}
p.schema = nil
p.inlineProjection(savedUsedCols, opt)
return nil
}
func (*columnPruner) name() string {
return "column_prune"
}
// By add const one, we can avoid empty Projection is eliminated.
// Because in some cases, Projectoin cannot be eliminated even its output is empty.
func addConstOneForEmptyProjection(p LogicalPlan) {
proj, ok := p.(*LogicalProjection)
if !ok {
return
}
if proj.Schema().Len() != 0 {
return
}
constOne := expression.NewOne()
proj.schema.Append(&expression.Column{
UniqueID: proj.ctx.GetSessionVars().AllocPlanColumnID(),
RetType: constOne.GetType(),
})
proj.Exprs = append(proj.Exprs, &expression.Constant{
Value: constOne.Value,
RetType: constOne.GetType(),
})
}
func appendColumnPruneTraceStep(p LogicalPlan, prunedColumns []*expression.Column, opt *logicalOptimizeOp) {
if len(prunedColumns) < 1 {
return
}
s := make([]fmt.Stringer, 0, len(prunedColumns))
for _, item := range prunedColumns {
s = append(s, item)
}
appendItemPruneTraceStep(p, "columns", s, opt)
}
func appendFunctionPruneTraceStep(p LogicalPlan, prunedFunctions []*aggregation.AggFuncDesc, opt *logicalOptimizeOp) {
if len(prunedFunctions) < 1 {
return
}
s := make([]fmt.Stringer, 0, len(prunedFunctions))
for _, item := range prunedFunctions {
s = append(s, item)
}
appendItemPruneTraceStep(p, "aggregation functions", s, opt)
}
func appendByItemsPruneTraceStep(p LogicalPlan, prunedByItems []*util.ByItems, opt *logicalOptimizeOp) {
if len(prunedByItems) < 1 {
return
}
s := make([]fmt.Stringer, 0, len(prunedByItems))
for _, item := range prunedByItems {
s = append(s, item)
}
appendItemPruneTraceStep(p, "byItems", s, opt)
}
func appendGroupByItemsPruneTraceStep(p LogicalPlan, prunedGroupByItems []expression.Expression, opt *logicalOptimizeOp) {
if len(prunedGroupByItems) < 1 {
return
}
s := make([]fmt.Stringer, 0, len(prunedGroupByItems))
for _, item := range prunedGroupByItems {
s = append(s, item)
}
appendItemPruneTraceStep(p, "groupByItems", s, opt)
}
func appendItemPruneTraceStep(p LogicalPlan, itemType string, prunedObjects []fmt.Stringer, opt *logicalOptimizeOp) {
if len(prunedObjects) < 1 {
return
}
action := func() string {
buffer := bytes.NewBufferString(fmt.Sprintf("%v_%v's %v[", p.TP(), p.ID(), itemType))
for i, item := range prunedObjects {
if i > 0 {
buffer.WriteString(",")
}
buffer.WriteString(item.String())
}
buffer.WriteString("] have been pruned")
return buffer.String()
}
reason := func() string {
return ""
}
opt.appendStepToCurrent(p.ID(), p.TP(), reason, action)
}
相关信息
相关文章
tidb collect_column_stats_usage 源码
0
赞
热门推荐
-
2、 - 优质文章
-
3、 gate.io
-
8、 golang
-
9、 openharmony
-
10、 Vue中input框自动聚焦