spark JavaKMeansExample 源码

  • 2022-10-20
  • 浏览 (217)

spark JavaKMeansExample 代码

文件路径:/examples/src/main/java/org/apache/spark/examples/ml/JavaKMeansExample.java

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.spark.examples.ml;

// $example on$
import org.apache.spark.ml.clustering.KMeansModel;
import org.apache.spark.ml.clustering.KMeans;
import org.apache.spark.ml.evaluation.ClusteringEvaluator;
import org.apache.spark.ml.linalg.Vector;
import org.apache.spark.sql.Dataset;
import org.apache.spark.sql.Row;
// $example off$
import org.apache.spark.sql.SparkSession;


/**
 * An example demonstrating k-means clustering.
 * Run with
 * <pre>
 * bin/run-example ml.JavaKMeansExample
 * </pre>
 */
public class JavaKMeansExample {

  public static void main(String[] args) {
    // Create a SparkSession.
    SparkSession spark = SparkSession
      .builder()
      .appName("JavaKMeansExample")
      .getOrCreate();

    // $example on$
    // Loads data.
    Dataset<Row> dataset = spark.read().format("libsvm").load("data/mllib/sample_kmeans_data.txt");

    // Trains a k-means model.
    KMeans kmeans = new KMeans().setK(2).setSeed(1L);
    KMeansModel model = kmeans.fit(dataset);

    // Make predictions
    Dataset<Row> predictions = model.transform(dataset);

    // Evaluate clustering by computing Silhouette score
    ClusteringEvaluator evaluator = new ClusteringEvaluator();

    double silhouette = evaluator.evaluate(predictions);
    System.out.println("Silhouette with squared euclidean distance = " + silhouette);

    // Shows the result.
    Vector[] centers = model.clusterCenters();
    System.out.println("Cluster Centers: ");
    for (Vector center: centers) {
      System.out.println(center);
    }
    // $example off$

    spark.stop();
  }
}

相关信息

spark 源码目录

相关文章

spark JavaAFTSurvivalRegressionExample 源码

spark JavaALSExample 源码

spark JavaBinarizerExample 源码

spark JavaBisectingKMeansExample 源码

spark JavaBucketedRandomProjectionLSHExample 源码

spark JavaBucketizerExample 源码

spark JavaChiSqSelectorExample 源码

spark JavaChiSquareTestExample 源码

spark JavaCorrelationExample 源码

spark JavaCountVectorizerExample 源码

0  赞