echarts transform 源码
echarts transform 代码
文件路径:/src/data/helper/transform.ts
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
import {
Dictionary, DimensionDefinitionLoose,
SourceFormat, DimensionDefinition, DimensionIndex,
OptionDataValue, DimensionLoose, DimensionName, ParsedValue,
SERIES_LAYOUT_BY_COLUMN, SOURCE_FORMAT_OBJECT_ROWS, SOURCE_FORMAT_ARRAY_ROWS,
OptionSourceDataObjectRows, OptionSourceDataArrayRows
} from '../../util/types';
import { normalizeToArray } from '../../util/model';
import {
createHashMap, bind, each, hasOwn, map, clone, isObject, extend, isNumber
} from 'zrender/src/core/util';
import {
getRawSourceItemGetter, getRawSourceDataCounter, getRawSourceValueGetter
} from './dataProvider';
import { parseDataValue } from './dataValueHelper';
import { log, makePrintable, throwError } from '../../util/log';
import { createSource, Source, SourceMetaRawOption, detectSourceFormat } from '../Source';
export type PipedDataTransformOption = DataTransformOption[];
export type DataTransformType = string;
export type DataTransformConfig = unknown;
export interface DataTransformOption {
type: DataTransformType;
config?: DataTransformConfig;
// Print the result via `console.log` when transform performed. Only work in dev mode for debug.
print?: boolean;
}
export interface ExternalDataTransform<TO extends DataTransformOption = DataTransformOption> {
// Must include namespace like: 'ecStat:regression'
type: string;
__isBuiltIn?: boolean;
transform: (
param: ExternalDataTransformParam<TO>
) => ExternalDataTransformResultItem | ExternalDataTransformResultItem[];
}
interface ExternalDataTransformParam<TO extends DataTransformOption = DataTransformOption> {
// This is the first source in upstreamList. In most cases,
// there is only one upstream source.
upstream: ExternalSource;
upstreamList: ExternalSource[];
config: TO['config'];
}
export interface ExternalDataTransformResultItem {
/**
* If `data` is null/undefined, inherit upstream data.
*/
data: OptionSourceDataArrayRows | OptionSourceDataObjectRows;
/**
* A `transform` can optionally return a dimensions definition.
* The rule:
* If this `transform result` have different dimensions from the upstream, it should return
* a new dimension definition. For example, this transform inherit the upstream data totally
* but add a extra dimension.
* Otherwise, do not need to return that dimension definition. echarts will inherit dimension
* definition from the upstream.
*/
dimensions?: DimensionDefinitionLoose[];
}
export type DataTransformDataItem = ExternalDataTransformResultItem['data'][number];
export interface ExternalDimensionDefinition extends Partial<DimensionDefinition> {
// Mandatory
index: DimensionIndex;
}
/**
* TODO: disable writable.
* This structure will be exposed to users.
*/
export class ExternalSource {
/**
* [Caveat]
* This instance is to be exposed to users.
* (1) DO NOT mount private members on this instance directly.
* If we have to use private members, we can make them in closure or use `makeInner`.
* (2) "soruce header count" is not provided to transform, because it's complicated to manage
* header and dimensions definition in each transfrom. Source header are all normalized to
* dimensions definitions in transforms and their downstreams.
*/
sourceFormat: SourceFormat;
getRawData(): Source['data'] {
// Only built-in transform available.
throw new Error('not supported');
}
getRawDataItem(dataIndex: number): DataTransformDataItem {
// Only built-in transform available.
throw new Error('not supported');
}
cloneRawData(): Source['data'] {
return;
}
/**
* @return If dimension not found, return null/undefined.
*/
getDimensionInfo(dim: DimensionLoose): ExternalDimensionDefinition {
return;
}
/**
* dimensions defined if and only if either:
* (a) dataset.dimensions are declared.
* (b) dataset data include dimensions definitions in data (detected or via specified `sourceHeader`).
* If dimensions are defined, `dimensionInfoAll` is corresponding to
* the defined dimensions.
* Otherwise, `dimensionInfoAll` is determined by data columns.
* @return Always return an array (even empty array).
*/
cloneAllDimensionInfo(): ExternalDimensionDefinition[] {
return;
}
count(): number {
return;
}
/**
* Only support by dimension index.
* No need to support by dimension name in transform function,
* because transform function is not case-specific, no need to use name literally.
*/
retrieveValue(dataIndex: number, dimIndex: DimensionIndex): OptionDataValue {
return;
}
retrieveValueFromItem(dataItem: DataTransformDataItem, dimIndex: DimensionIndex): OptionDataValue {
return;
}
convertValue(rawVal: unknown, dimInfo: ExternalDimensionDefinition): ParsedValue {
return parseDataValue(rawVal, dimInfo);
}
}
function createExternalSource(internalSource: Source, externalTransform: ExternalDataTransform): ExternalSource {
const extSource = new ExternalSource();
const data = internalSource.data;
const sourceFormat = extSource.sourceFormat = internalSource.sourceFormat;
const sourceHeaderCount = internalSource.startIndex;
let errMsg = '';
if (internalSource.seriesLayoutBy !== SERIES_LAYOUT_BY_COLUMN) {
// For the logic simplicity in transformer, only 'culumn' is
// supported in data transform. Otherwise, the `dimensionsDefine`
// might be detected by 'row', which probably confuses users.
if (__DEV__) {
errMsg = '`seriesLayoutBy` of upstream dataset can only be "column" in data transform.';
}
throwError(errMsg);
}
// [MEMO]
// Create a new dimensions structure for exposing.
// Do not expose all dimension info to users directly.
// Because the dimension is probably auto detected from data and not might reliable.
// Should not lead the transformers to think that is reliable and return it.
// See [DIMENSION_INHERIT_RULE] in `sourceManager.ts`.
const dimensions = [] as ExternalDimensionDefinition[];
const dimsByName = {} as Dictionary<ExternalDimensionDefinition>;
const dimsDef = internalSource.dimensionsDefine;
if (dimsDef) {
each(dimsDef, function (dimDef, idx) {
const name = dimDef.name;
const dimDefExt = {
index: idx,
name: name,
displayName: dimDef.displayName
};
dimensions.push(dimDefExt);
// Users probably not sepcify dimension name. For simplicity, data transform
// do not generate dimension name.
if (name != null) {
// Dimension name should not be duplicated.
// For simplicity, data transform forbid name duplication, do not generate
// new name like module `completeDimensions.ts` did, but just tell users.
let errMsg = '';
if (hasOwn(dimsByName, name)) {
if (__DEV__) {
errMsg = 'dimension name "' + name + '" duplicated.';
}
throwError(errMsg);
}
dimsByName[name] = dimDefExt;
}
});
}
// If dimension definitions are not defined and can not be detected.
// e.g., pure data `[[11, 22], ...]`.
else {
for (let i = 0; i < internalSource.dimensionsDetectedCount || 0; i++) {
// Do not generete name or anything others. The consequence process in
// `transform` or `series` probably have there own name generation strategry.
dimensions.push({ index: i });
}
}
// Implement public methods:
const rawItemGetter = getRawSourceItemGetter(sourceFormat, SERIES_LAYOUT_BY_COLUMN);
if (externalTransform.__isBuiltIn) {
extSource.getRawDataItem = function (dataIndex) {
return rawItemGetter(data, sourceHeaderCount, dimensions, dataIndex) as DataTransformDataItem;
};
extSource.getRawData = bind(getRawData, null, internalSource);
}
extSource.cloneRawData = bind(cloneRawData, null, internalSource);
const rawCounter = getRawSourceDataCounter(sourceFormat, SERIES_LAYOUT_BY_COLUMN);
extSource.count = bind(rawCounter, null, data, sourceHeaderCount, dimensions);
const rawValueGetter = getRawSourceValueGetter(sourceFormat);
extSource.retrieveValue = function (dataIndex, dimIndex) {
const rawItem = rawItemGetter(data, sourceHeaderCount, dimensions, dataIndex) as DataTransformDataItem;
return retrieveValueFromItem(rawItem, dimIndex);
};
const retrieveValueFromItem = extSource.retrieveValueFromItem = function (dataItem, dimIndex) {
if (dataItem == null) {
return;
}
const dimDef = dimensions[dimIndex];
// When `dimIndex` is `null`, `rawValueGetter` return the whole item.
if (dimDef) {
return rawValueGetter(dataItem, dimIndex, dimDef.name) as OptionDataValue;
}
};
extSource.getDimensionInfo = bind(getDimensionInfo, null, dimensions, dimsByName);
extSource.cloneAllDimensionInfo = bind(cloneAllDimensionInfo, null, dimensions);
return extSource;
}
function getRawData(upstream: Source): Source['data'] {
const sourceFormat = upstream.sourceFormat;
if (!isSupportedSourceFormat(sourceFormat)) {
let errMsg = '';
if (__DEV__) {
errMsg = '`getRawData` is not supported in source format ' + sourceFormat;
}
throwError(errMsg);
}
return upstream.data;
}
function cloneRawData(upstream: Source): Source['data'] {
const sourceFormat = upstream.sourceFormat;
const data = upstream.data;
if (!isSupportedSourceFormat(sourceFormat)) {
let errMsg = '';
if (__DEV__) {
errMsg = '`cloneRawData` is not supported in source format ' + sourceFormat;
}
throwError(errMsg);
}
if (sourceFormat === SOURCE_FORMAT_ARRAY_ROWS) {
const result = [];
for (let i = 0, len = data.length; i < len; i++) {
// Not strictly clone for performance
result.push((data as OptionSourceDataArrayRows)[i].slice());
}
return result;
}
else if (sourceFormat === SOURCE_FORMAT_OBJECT_ROWS) {
const result = [];
for (let i = 0, len = data.length; i < len; i++) {
// Not strictly clone for performance
result.push(extend({}, (data as OptionSourceDataObjectRows)[i]));
}
return result;
}
}
function getDimensionInfo(
dimensions: ExternalDimensionDefinition[],
dimsByName: Dictionary<ExternalDimensionDefinition>,
dim: DimensionLoose
): ExternalDimensionDefinition {
if (dim == null) {
return;
}
// Keep the same logic as `List::getDimension` did.
if (isNumber(dim)
// If being a number-like string but not being defined a dimension name.
|| (!isNaN(dim as any) && !hasOwn(dimsByName, dim))
) {
return dimensions[dim as DimensionIndex];
}
else if (hasOwn(dimsByName, dim)) {
return dimsByName[dim as DimensionName];
}
}
function cloneAllDimensionInfo(dimensions: ExternalDimensionDefinition[]): ExternalDimensionDefinition[] {
return clone(dimensions);
}
const externalTransformMap = createHashMap<ExternalDataTransform, string>();
export function registerExternalTransform(
externalTransform: ExternalDataTransform
): void {
externalTransform = clone(externalTransform);
let type = externalTransform.type;
let errMsg = '';
if (!type) {
if (__DEV__) {
errMsg = 'Must have a `type` when `registerTransform`.';
}
throwError(errMsg);
}
const typeParsed = type.split(':');
if (typeParsed.length !== 2) {
if (__DEV__) {
errMsg = 'Name must include namespace like "ns:regression".';
}
throwError(errMsg);
}
// Namespace 'echarts:xxx' is official namespace, where the transforms should
// be called directly via 'xxx' rather than 'echarts:xxx'.
let isBuiltIn = false;
if (typeParsed[0] === 'echarts') {
type = typeParsed[1];
isBuiltIn = true;
}
externalTransform.__isBuiltIn = isBuiltIn;
externalTransformMap.set(type, externalTransform);
}
export function applyDataTransform(
rawTransOption: DataTransformOption | PipedDataTransformOption,
sourceList: Source[],
infoForPrint: { datasetIndex: number }
): Source[] {
const pipedTransOption: PipedDataTransformOption = normalizeToArray(rawTransOption);
const pipeLen = pipedTransOption.length;
let errMsg = '';
if (!pipeLen) {
if (__DEV__) {
errMsg = 'If `transform` declared, it should at least contain one transform.';
}
throwError(errMsg);
}
for (let i = 0, len = pipeLen; i < len; i++) {
const transOption = pipedTransOption[i];
sourceList = applySingleDataTransform(transOption, sourceList, infoForPrint, pipeLen === 1 ? null : i);
// piped transform only support single input, except the fist one.
// piped transform only support single output, except the last one.
if (i !== len - 1) {
sourceList.length = Math.max(sourceList.length, 1);
}
}
return sourceList;
}
function applySingleDataTransform(
transOption: DataTransformOption,
upSourceList: Source[],
infoForPrint: { datasetIndex: number },
// If `pipeIndex` is null/undefined, no piped transform.
pipeIndex: number
): Source[] {
let errMsg = '';
if (!upSourceList.length) {
if (__DEV__) {
errMsg = 'Must have at least one upstream dataset.';
}
throwError(errMsg);
}
if (!isObject(transOption)) {
if (__DEV__) {
errMsg = 'transform declaration must be an object rather than ' + typeof transOption + '.';
}
throwError(errMsg);
}
const transType = transOption.type;
const externalTransform = externalTransformMap.get(transType);
if (!externalTransform) {
if (__DEV__) {
errMsg = 'Can not find transform on type "' + transType + '".';
}
throwError(errMsg);
}
// Prepare source
const extUpSourceList = map(upSourceList, upSource => createExternalSource(upSource, externalTransform));
const resultList = normalizeToArray(
externalTransform.transform({
upstream: extUpSourceList[0],
upstreamList: extUpSourceList,
config: clone(transOption.config)
})
);
if (__DEV__) {
if (transOption.print) {
const printStrArr = map(resultList, extSource => {
const pipeIndexStr = pipeIndex != null ? ' === pipe index: ' + pipeIndex : '';
return [
'=== dataset index: ' + infoForPrint.datasetIndex + pipeIndexStr + ' ===',
'- transform result data:',
makePrintable(extSource.data),
'- transform result dimensions:',
makePrintable(extSource.dimensions)
].join('\n');
}).join('\n');
log(printStrArr);
}
}
return map(resultList, function (result, resultIndex) {
let errMsg = '';
if (!isObject(result)) {
if (__DEV__) {
errMsg = 'A transform should not return some empty results.';
}
throwError(errMsg);
}
if (!result.data) {
if (__DEV__) {
errMsg = 'Transform result data should be not be null or undefined';
}
throwError(errMsg);
}
const sourceFormat = detectSourceFormat(result.data);
if (!isSupportedSourceFormat(sourceFormat)) {
if (__DEV__) {
errMsg = 'Transform result data should be array rows or object rows.';
}
throwError(errMsg);
}
let resultMetaRawOption: SourceMetaRawOption;
const firstUpSource = upSourceList[0];
/**
* Intuitively, the end users known the content of the original `dataset.source`,
* calucating the transform result in mind.
* Suppose the original `dataset.source` is:
* ```js
* [
* ['product', '2012', '2013', '2014', '2015'],
* ['AAA', 41.1, 30.4, 65.1, 53.3],
* ['BBB', 86.5, 92.1, 85.7, 83.1],
* ['CCC', 24.1, 67.2, 79.5, 86.4]
* ]
* ```
* The dimension info have to be detected from the source data.
* Some of the transformers (like filter, sort) will follow the dimension info
* of upstream, while others use new dimensions (like aggregate).
* Transformer can output a field `dimensions` to define the its own output dimensions.
* We also allow transformers to ignore the output `dimensions` field, and
* inherit the upstream dimensions definition. It can reduce the burden of handling
* dimensions in transformers.
*
* See also [DIMENSION_INHERIT_RULE] in `sourceManager.ts`.
*/
if (
firstUpSource
&& resultIndex === 0
// If transformer returns `dimensions`, it means that the transformer has different
// dimensions definitions. We do not inherit anything from upstream.
&& !result.dimensions
) {
const startIndex = firstUpSource.startIndex;
// We copy the header of upstream to the result, because:
// (1) The returned data always does not contain header line and can not be used
// as dimension-detection. In this case we can not use "detected dimensions" of
// upstream directly, because it might be detected based on different `seriesLayoutBy`.
// (2) We should support that the series read the upstream source in `seriesLayoutBy: 'row'`.
// So the original detected header should be add to the result, otherwise they can not be read.
if (startIndex) {
result.data = (firstUpSource.data as []).slice(0, startIndex)
.concat(result.data as []);
}
resultMetaRawOption = {
seriesLayoutBy: SERIES_LAYOUT_BY_COLUMN,
sourceHeader: startIndex,
dimensions: firstUpSource.metaRawOption.dimensions
};
}
else {
resultMetaRawOption = {
seriesLayoutBy: SERIES_LAYOUT_BY_COLUMN,
sourceHeader: 0,
dimensions: result.dimensions
};
}
return createSource(
result.data,
resultMetaRawOption,
null
);
});
}
function isSupportedSourceFormat(sourceFormat: SourceFormat): boolean {
return sourceFormat === SOURCE_FORMAT_ARRAY_ROWS || sourceFormat === SOURCE_FORMAT_OBJECT_ROWS;
}
相关信息
相关文章
0
赞
热门推荐
-
2、 - 优质文章
-
3、 gate.io
-
8、 golang
-
9、 openharmony
-
10、 Vue中input框自动聚焦