spark PythonArrowInput 源码

  • 2022-10-20
  • 浏览 (272)

spark PythonArrowInput 代码

文件路径:/sql/core/src/main/scala/org/apache/spark/sql/execution/python/PythonArrowInput.scala

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.spark.sql.execution.python

import java.io.DataOutputStream
import java.net.Socket

import org.apache.arrow.vector.VectorSchemaRoot
import org.apache.arrow.vector.ipc.ArrowStreamWriter

import org.apache.spark.{SparkEnv, TaskContext}
import org.apache.spark.api.python.{BasePythonRunner, PythonRDD}
import org.apache.spark.sql.catalyst.InternalRow
import org.apache.spark.sql.execution.arrow.ArrowWriter
import org.apache.spark.sql.types.StructType
import org.apache.spark.sql.util.ArrowUtils
import org.apache.spark.util.Utils

/**
 * A trait that can be mixed-in with [[BasePythonRunner]]. It implements the logic from
 * JVM (an iterator of internal rows + additional data if required) to Python (Arrow).
 */
private[python] trait PythonArrowInput[IN] { self: BasePythonRunner[IN, _] =>
  protected val workerConf: Map[String, String]

  protected val schema: StructType

  protected val timeZoneId: String

  protected def writeIteratorToArrowStream(
      root: VectorSchemaRoot,
      writer: ArrowStreamWriter,
      dataOut: DataOutputStream,
      inputIterator: Iterator[IN]): Unit

  protected def handleMetadataBeforeExec(stream: DataOutputStream): Unit = {
    // Write config for the worker as a number of key -> value pairs of strings
    stream.writeInt(workerConf.size)
    for ((k, v) <- workerConf) {
      PythonRDD.writeUTF(k, stream)
      PythonRDD.writeUTF(v, stream)
    }
  }

  protected override def newWriterThread(
      env: SparkEnv,
      worker: Socket,
      inputIterator: Iterator[IN],
      partitionIndex: Int,
      context: TaskContext): WriterThread = {
    new WriterThread(env, worker, inputIterator, partitionIndex, context) {

      protected override def writeCommand(dataOut: DataOutputStream): Unit = {
        handleMetadataBeforeExec(dataOut)
        PythonUDFRunner.writeUDFs(dataOut, funcs, argOffsets)
      }

      protected override def writeIteratorToStream(dataOut: DataOutputStream): Unit = {
        val arrowSchema = ArrowUtils.toArrowSchema(schema, timeZoneId)
        val allocator = ArrowUtils.rootAllocator.newChildAllocator(
          s"stdout writer for $pythonExec", 0, Long.MaxValue)
        val root = VectorSchemaRoot.create(arrowSchema, allocator)

        Utils.tryWithSafeFinally {
          val writer = new ArrowStreamWriter(root, null, dataOut)
          writer.start()

          writeIteratorToArrowStream(root, writer, dataOut, inputIterator)

          // end writes footer to the output stream and doesn't clean any resources.
          // It could throw exception if the output stream is closed, so it should be
          // in the try block.
          writer.end()
        } {
          // If we close root and allocator in TaskCompletionListener, there could be a race
          // condition where the writer thread keeps writing to the VectorSchemaRoot while
          // it's being closed by the TaskCompletion listener.
          // Closing root and allocator here is cleaner because root and allocator is owned
          // by the writer thread and is only visible to the writer thread.
          //
          // If the writer thread is interrupted by TaskCompletionListener, it should either
          // (1) in the try block, in which case it will get an InterruptedException when
          // performing io, and goes into the finally block or (2) in the finally block,
          // in which case it will ignore the interruption and close the resources.
          root.close()
          allocator.close()
        }
      }
    }
  }
}

private[python] trait BasicPythonArrowInput extends PythonArrowInput[Iterator[InternalRow]] {
  self: BasePythonRunner[Iterator[InternalRow], _] =>

  protected def writeIteratorToArrowStream(
      root: VectorSchemaRoot,
      writer: ArrowStreamWriter,
      dataOut: DataOutputStream,
      inputIterator: Iterator[Iterator[InternalRow]]): Unit = {
    val arrowWriter = ArrowWriter.create(root)

    while (inputIterator.hasNext) {
      val nextBatch = inputIterator.next()

      while (nextBatch.hasNext) {
        arrowWriter.write(nextBatch.next())
      }

      arrowWriter.finish()
      writer.writeBatch()
      arrowWriter.reset()
    }
  }
}

相关信息

spark 源码目录

相关文章

spark AggregateInPandasExec 源码

spark ApplyInPandasWithStatePythonRunner 源码

spark ApplyInPandasWithStateWriter 源码

spark ArrowEvalPythonExec 源码

spark ArrowPythonRunner 源码

spark AttachDistributedSequenceExec 源码

spark BatchEvalPythonExec 源码

spark CoGroupedArrowPythonRunner 源码

spark EvalPythonExec 源码

spark EvaluatePython 源码

0  赞