spark StorageUtils 源码

  • 2022-10-20
  • 浏览 (300)

spark StorageUtils 代码

文件路径:/core/src/main/scala/org/apache/spark/storage/StorageUtils.scala

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.spark.storage

import java.nio.{ByteBuffer, MappedByteBuffer}

import scala.collection.Map
import scala.collection.mutable

import org.apache.commons.lang3.{JavaVersion, SystemUtils}
import sun.misc.Unsafe
import sun.nio.ch.DirectBuffer

import org.apache.spark.SparkConf
import org.apache.spark.internal.{config, Logging}
import org.apache.spark.util.Utils

/**
 * Storage information for each BlockManager.
 *
 * This class assumes BlockId and BlockStatus are immutable, such that the consumers of this
 * class cannot mutate the source of the information. Accesses are not thread-safe.
 */
private[spark] class StorageStatus(
    val blockManagerId: BlockManagerId,
    val maxMemory: Long,
    val maxOnHeapMem: Option[Long],
    val maxOffHeapMem: Option[Long]) {

  /**
   * Internal representation of the blocks stored in this block manager.
   */
  private val _rddBlocks = new mutable.HashMap[Int, mutable.Map[BlockId, BlockStatus]]
  private val _nonRddBlocks = new mutable.HashMap[BlockId, BlockStatus]

  private case class RddStorageInfo(memoryUsage: Long, diskUsage: Long, level: StorageLevel)
  private val _rddStorageInfo = new mutable.HashMap[Int, RddStorageInfo]

  private case class NonRddStorageInfo(var onHeapUsage: Long, var offHeapUsage: Long,
      var diskUsage: Long)
  private val _nonRddStorageInfo = NonRddStorageInfo(0L, 0L, 0L)

  /** Create a storage status with an initial set of blocks, leaving the source unmodified. */
  def this(
      bmid: BlockManagerId,
      maxMemory: Long,
      maxOnHeapMem: Option[Long],
      maxOffHeapMem: Option[Long],
      initialBlocks: Map[BlockId, BlockStatus]) = {
    this(bmid, maxMemory, maxOnHeapMem, maxOffHeapMem)
    initialBlocks.foreach { case (bid, bstatus) => addBlock(bid, bstatus) }
  }

  /**
   * Return the blocks stored in this block manager.
   *
   * @note This is somewhat expensive, as it involves cloning the underlying maps and then
   * concatenating them together. Much faster alternatives exist for common operations such as
   * contains, get, and size.
   */
  def blocks: Map[BlockId, BlockStatus] = _nonRddBlocks ++ rddBlocks

  /**
   * Return the RDD blocks stored in this block manager.
   *
   * @note This is somewhat expensive, as it involves cloning the underlying maps and then
   * concatenating them together. Much faster alternatives exist for common operations such as
   * getting the memory, disk, and off-heap memory sizes occupied by this RDD.
   */
  def rddBlocks: Map[BlockId, BlockStatus] = _rddBlocks.flatMap { case (_, blocks) => blocks }

  /** Add the given block to this storage status. If it already exists, overwrite it. */
  private[spark] def addBlock(blockId: BlockId, blockStatus: BlockStatus): Unit = {
    updateStorageInfo(blockId, blockStatus)
    blockId match {
      case RDDBlockId(rddId, _) =>
        _rddBlocks.getOrElseUpdate(rddId, new mutable.HashMap)(blockId) = blockStatus
      case _ =>
        _nonRddBlocks(blockId) = blockStatus
    }
  }

  /**
   * Return the given block stored in this block manager in O(1) time.
   *
   * @note This is much faster than `this.blocks.get`, which is O(blocks) time.
   */
  def getBlock(blockId: BlockId): Option[BlockStatus] = {
    blockId match {
      case RDDBlockId(rddId, _) =>
        _rddBlocks.get(rddId).flatMap(_.get(blockId))
      case _ =>
        _nonRddBlocks.get(blockId)
    }
  }

  /** Return the max memory can be used by this block manager. */
  def maxMem: Long = maxMemory

  /** Return the memory remaining in this block manager. */
  def memRemaining: Long = maxMem - memUsed

  /** Return the memory used by this block manager. */
  def memUsed: Long = onHeapMemUsed.getOrElse(0L) + offHeapMemUsed.getOrElse(0L)

  /** Return the on-heap memory remaining in this block manager. */
  def onHeapMemRemaining: Option[Long] =
    for (m <- maxOnHeapMem; o <- onHeapMemUsed) yield m - o

  /** Return the off-heap memory remaining in this block manager. */
  def offHeapMemRemaining: Option[Long] =
    for (m <- maxOffHeapMem; o <- offHeapMemUsed) yield m - o

  /** Return the on-heap memory used by this block manager. */
  def onHeapMemUsed: Option[Long] = onHeapCacheSize.map(_ + _nonRddStorageInfo.onHeapUsage)

  /** Return the off-heap memory used by this block manager. */
  def offHeapMemUsed: Option[Long] = offHeapCacheSize.map(_ + _nonRddStorageInfo.offHeapUsage)

  /** Return the memory used by on-heap caching RDDs */
  def onHeapCacheSize: Option[Long] = maxOnHeapMem.map { _ =>
    _rddStorageInfo.collect {
      case (_, storageInfo) if !storageInfo.level.useOffHeap => storageInfo.memoryUsage
    }.sum
  }

  /** Return the memory used by off-heap caching RDDs */
  def offHeapCacheSize: Option[Long] = maxOffHeapMem.map { _ =>
    _rddStorageInfo.collect {
      case (_, storageInfo) if storageInfo.level.useOffHeap => storageInfo.memoryUsage
    }.sum
  }

  /** Return the disk space used by this block manager. */
  def diskUsed: Long = _nonRddStorageInfo.diskUsage + _rddBlocks.keys.toSeq.map(diskUsedByRdd).sum

  /** Return the disk space used by the given RDD in this block manager in O(1) time. */
  def diskUsedByRdd(rddId: Int): Long = _rddStorageInfo.get(rddId).map(_.diskUsage).getOrElse(0L)

  /**
   * Update the relevant storage info, taking into account any existing status for this block.
   */
  private def updateStorageInfo(blockId: BlockId, newBlockStatus: BlockStatus): Unit = {
    val oldBlockStatus = getBlock(blockId).getOrElse(BlockStatus.empty)
    val changeInMem = newBlockStatus.memSize - oldBlockStatus.memSize
    val changeInDisk = newBlockStatus.diskSize - oldBlockStatus.diskSize
    val level = newBlockStatus.storageLevel

    // Compute new info from old info
    val (oldMem, oldDisk) = blockId match {
      case RDDBlockId(rddId, _) =>
        _rddStorageInfo.get(rddId)
          .map { case RddStorageInfo(mem, disk, _) => (mem, disk) }
          .getOrElse((0L, 0L))
      case _ if !level.useOffHeap =>
        (_nonRddStorageInfo.onHeapUsage, _nonRddStorageInfo.diskUsage)
      case _ =>
        (_nonRddStorageInfo.offHeapUsage, _nonRddStorageInfo.diskUsage)
    }
    val newMem = math.max(oldMem + changeInMem, 0L)
    val newDisk = math.max(oldDisk + changeInDisk, 0L)

    // Set the correct info
    blockId match {
      case RDDBlockId(rddId, _) =>
        // If this RDD is no longer persisted, remove it
        if (newMem + newDisk == 0) {
          _rddStorageInfo.remove(rddId)
        } else {
          _rddStorageInfo(rddId) = RddStorageInfo(newMem, newDisk, level)
        }
      case _ =>
        if (!level.useOffHeap) {
          _nonRddStorageInfo.onHeapUsage = newMem
        } else {
          _nonRddStorageInfo.offHeapUsage = newMem
        }
        _nonRddStorageInfo.diskUsage = newDisk
    }
  }
}

/** Helper methods for storage-related objects. */
private[spark] object StorageUtils extends Logging {

  // In Java 8, the type of DirectBuffer.cleaner() was sun.misc.Cleaner, and it was possible
  // to access the method sun.misc.Cleaner.clean() to invoke it. The type changed to
  // jdk.internal.ref.Cleaner in later JDKs, and the .clean() method is not accessible even with
  // reflection. However sun.misc.Unsafe added a invokeCleaner() method in JDK 9+ and this is
  // still accessible with reflection.
  private val bufferCleaner: DirectBuffer => Unit =
    if (SystemUtils.isJavaVersionAtLeast(JavaVersion.JAVA_9)) {
      val cleanerMethod =
        Utils.classForName("sun.misc.Unsafe").getMethod("invokeCleaner", classOf[ByteBuffer])
      val unsafeField = classOf[Unsafe].getDeclaredField("theUnsafe")
      unsafeField.setAccessible(true)
      val unsafe = unsafeField.get(null).asInstanceOf[Unsafe]
      buffer: DirectBuffer => cleanerMethod.invoke(unsafe, buffer)
    } else {
      val cleanerMethod = Utils.classForName("sun.misc.Cleaner").getMethod("clean")
      buffer: DirectBuffer => {
        // Careful to avoid the return type of .cleaner(), which changes with JDK
        val cleaner: AnyRef = buffer.cleaner()
        if (cleaner != null) {
          cleanerMethod.invoke(cleaner)
        }
      }
    }

  /**
   * Attempt to clean up a ByteBuffer if it is direct or memory-mapped. This uses an *unsafe* Sun
   * API that will cause errors if one attempts to read from the disposed buffer. However, neither
   * the bytes allocated to direct buffers nor file descriptors opened for memory-mapped buffers put
   * pressure on the garbage collector. Waiting for garbage collection may lead to the depletion of
   * off-heap memory or huge numbers of open files. There's unfortunately no standard API to
   * manually dispose of these kinds of buffers.
   */
  def dispose(buffer: ByteBuffer): Unit = {
    if (buffer != null && buffer.isInstanceOf[MappedByteBuffer]) {
      logTrace(s"Disposing of $buffer")
      bufferCleaner(buffer.asInstanceOf[DirectBuffer])
    }
  }

  /**
   * Get the port used by the external shuffle service. In Yarn mode, this may be already be
   * set through the Hadoop configuration as the server is launched in the Yarn NM.
   */
  def externalShuffleServicePort(conf: SparkConf): Int = {
    val tmpPort = Utils.getSparkOrYarnConfig(conf, config.SHUFFLE_SERVICE_PORT.key,
      config.SHUFFLE_SERVICE_PORT.defaultValueString).toInt
    if (tmpPort == 0) {
      // for testing, we set "spark.shuffle.service.port" to 0 in the yarn config, so yarn finds
      // an open port.  But we still need to tell our spark apps the right port to use.  So
      // only if the yarn config has the port set to 0, we prefer the value in the spark config
      conf.get(config.SHUFFLE_SERVICE_PORT.key).toInt
    } else {
      tmpPort
    }
  }
}

相关信息

spark 源码目录

相关文章

spark BlockException 源码

spark BlockId 源码

spark BlockInfoManager 源码

spark BlockManager 源码

spark BlockManagerDecommissioner 源码

spark BlockManagerId 源码

spark BlockManagerManagedBuffer 源码

spark BlockManagerMaster 源码

spark BlockManagerMasterEndpoint 源码

spark BlockManagerMasterHeartbeatEndpoint 源码

0  赞