spark AppStatusListener 源码

  • 2022-10-20
  • 浏览 (259)

spark AppStatusListener 代码

文件路径:/core/src/main/scala/org/apache/spark/status/AppStatusListener.scala

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.spark.status

import java.util.Date
import java.util.concurrent.ConcurrentHashMap

import scala.collection.JavaConverters._
import scala.collection.mutable.{ArrayBuffer, HashMap}
import scala.collection.mutable

import org.apache.spark._
import org.apache.spark.executor.{ExecutorMetrics, TaskMetrics}
import org.apache.spark.internal.Logging
import org.apache.spark.internal.config.CPUS_PER_TASK
import org.apache.spark.internal.config.Status._
import org.apache.spark.resource.ResourceProfile.CPUS
import org.apache.spark.scheduler._
import org.apache.spark.status.api.v1
import org.apache.spark.storage._
import org.apache.spark.ui.SparkUI
import org.apache.spark.ui.scope._

/**
 * A Spark listener that writes application information to a data store. The types written to the
 * store are defined in the `storeTypes.scala` file and are based on the public REST API.
 *
 * @param lastUpdateTime When replaying logs, the log's last update time, so that the duration of
 *                       unfinished tasks can be more accurately calculated (see SPARK-21922).
 */
private[spark] class AppStatusListener(
    kvstore: ElementTrackingStore,
    conf: SparkConf,
    live: Boolean,
    appStatusSource: Option[AppStatusSource] = None,
    lastUpdateTime: Option[Long] = None) extends SparkListener with Logging {

  private var sparkVersion = SPARK_VERSION
  private var appInfo: v1.ApplicationInfo = null
  private var appSummary = new AppSummary(0, 0)
  private var defaultCpusPerTask: Int = 1

  // How often to update live entities. -1 means "never update" when replaying applications,
  // meaning only the last write will happen. For live applications, this avoids a few
  // operations that we can live without when rapidly processing incoming task events.
  private val liveUpdatePeriodNs = if (live) conf.get(LIVE_ENTITY_UPDATE_PERIOD) else -1L

  /**
   * Minimum time elapsed before stale UI data is flushed. This avoids UI staleness when incoming
   * task events are not fired frequently.
   */
  private val liveUpdateMinFlushPeriod = conf.get(LIVE_ENTITY_UPDATE_MIN_FLUSH_PERIOD)

  private val maxTasksPerStage = conf.get(MAX_RETAINED_TASKS_PER_STAGE)
  private val maxGraphRootNodes = conf.get(MAX_RETAINED_ROOT_NODES)

  // Keep track of live entities, so that task metrics can be efficiently updated (without
  // causing too many writes to the underlying store, and other expensive operations).
  private val liveStages = new ConcurrentHashMap[(Int, Int), LiveStage]()
  private val liveJobs = new HashMap[Int, LiveJob]()
  private[spark] val liveExecutors = new HashMap[String, LiveExecutor]()
  private val deadExecutors = new HashMap[String, LiveExecutor]()
  private val liveTasks = new HashMap[Long, LiveTask]()
  private val liveRDDs = new HashMap[Int, LiveRDD]()
  private val pools = new HashMap[String, SchedulerPool]()
  private val liveResourceProfiles = new HashMap[Int, LiveResourceProfile]()
  private[spark] val liveMiscellaneousProcess = new HashMap[String, LiveMiscellaneousProcess]()

  private val SQL_EXECUTION_ID_KEY = "spark.sql.execution.id"
  // Keep the active executor count as a separate variable to avoid having to do synchronization
  // around liveExecutors.
  @volatile private var activeExecutorCount = 0

  /** The last time when flushing `LiveEntity`s. This is to avoid flushing too frequently. */
  private var lastFlushTimeNs = System.nanoTime()

  kvstore.addTrigger(classOf[ExecutorSummaryWrapper], conf.get(MAX_RETAINED_DEAD_EXECUTORS))
    { count => cleanupExecutors(count) }

  kvstore.addTrigger(classOf[JobDataWrapper], conf.get(MAX_RETAINED_JOBS)) { count =>
    cleanupJobs(count)
  }

  kvstore.addTrigger(classOf[StageDataWrapper], conf.get(MAX_RETAINED_STAGES)) { count =>
    cleanupStages(count)
  }

  kvstore.onFlush {
    if (!live) {
      val now = System.nanoTime()
      flush(update(_, now))
    }
  }

  override def onOtherEvent(event: SparkListenerEvent): Unit = event match {
    case SparkListenerLogStart(version) => sparkVersion = version
    case processInfoEvent: SparkListenerMiscellaneousProcessAdded =>
      onMiscellaneousProcessAdded(processInfoEvent)
    case _ =>
  }

  override def onApplicationStart(event: SparkListenerApplicationStart): Unit = {
    assert(event.appId.isDefined, "Application without IDs are not supported.")

    val attempt = v1.ApplicationAttemptInfo(
      event.appAttemptId,
      new Date(event.time),
      new Date(-1),
      new Date(event.time),
      -1L,
      event.sparkUser,
      false,
      sparkVersion)

    appInfo = v1.ApplicationInfo(
      event.appId.get,
      event.appName,
      None,
      None,
      None,
      None,
      Seq(attempt))

    kvstore.write(new ApplicationInfoWrapper(appInfo))
    kvstore.write(appSummary)

    // Update the driver block manager with logs from this event. The SparkContext initialization
    // code registers the driver before this event is sent.
    event.driverLogs.foreach { logs =>
      val driver = liveExecutors.get(SparkContext.DRIVER_IDENTIFIER)
      driver.foreach { d =>
        d.executorLogs = logs.toMap
        d.attributes = event.driverAttributes.getOrElse(Map.empty).toMap
        update(d, System.nanoTime())
      }
    }
  }

  override def onResourceProfileAdded(event: SparkListenerResourceProfileAdded): Unit = {
    val maxTasks = if (event.resourceProfile.isCoresLimitKnown) {
      Some(event.resourceProfile.maxTasksPerExecutor(conf))
    } else {
      None
    }
    val liveRP = new LiveResourceProfile(event.resourceProfile.id,
      event.resourceProfile.executorResources, event.resourceProfile.taskResources, maxTasks)
    liveResourceProfiles(event.resourceProfile.id) = liveRP
    val rpInfo = new v1.ResourceProfileInfo(liveRP.resourceProfileId,
      liveRP.executorResources, liveRP.taskResources)
    kvstore.write(new ResourceProfileWrapper(rpInfo))
  }

  override def onEnvironmentUpdate(event: SparkListenerEnvironmentUpdate): Unit = {
    val details = event.environmentDetails

    val jvmInfo = Map(details("JVM Information"): _*)
    val runtime = new v1.RuntimeInfo(
      jvmInfo.get("Java Version").orNull,
      jvmInfo.get("Java Home").orNull,
      jvmInfo.get("Scala Version").orNull)

    val envInfo = new v1.ApplicationEnvironmentInfo(
      runtime,
      details.getOrElse("Spark Properties", Nil),
      details.getOrElse("Hadoop Properties", Nil),
      details.getOrElse("System Properties", Nil),
      details.getOrElse("Metrics Properties", Nil),
      details.getOrElse("Classpath Entries", Nil),
      Nil)

    defaultCpusPerTask = envInfo.sparkProperties.toMap.get(CPUS_PER_TASK.key).map(_.toInt)
      .getOrElse(defaultCpusPerTask)

    kvstore.write(new ApplicationEnvironmentInfoWrapper(envInfo))
  }

  override def onApplicationEnd(event: SparkListenerApplicationEnd): Unit = {
    val old = appInfo.attempts.head
    val attempt = v1.ApplicationAttemptInfo(
      old.attemptId,
      old.startTime,
      new Date(event.time),
      new Date(event.time),
      event.time - old.startTime.getTime(),
      old.sparkUser,
      true,
      old.appSparkVersion)

    appInfo = v1.ApplicationInfo(
      appInfo.id,
      appInfo.name,
      None,
      None,
      None,
      None,
      Seq(attempt))
    kvstore.write(new ApplicationInfoWrapper(appInfo))
  }

  override def onExecutorAdded(event: SparkListenerExecutorAdded): Unit = {
    // This needs to be an update in case an executor re-registers after the driver has
    // marked it as "dead".
    val exec = getOrCreateExecutor(event.executorId, event.time)
    exec.host = event.executorInfo.executorHost
    exec.isActive = true
    exec.totalCores = event.executorInfo.totalCores
    val rpId = event.executorInfo.resourceProfileId
    val liveRP = liveResourceProfiles.get(rpId)
    val cpusPerTask = liveRP.flatMap(_.taskResources.get(CPUS))
      .map(_.amount.toInt).getOrElse(defaultCpusPerTask)
    val maxTasksPerExec = liveRP.flatMap(_.maxTasksPerExecutor)
    exec.maxTasks = maxTasksPerExec.getOrElse(event.executorInfo.totalCores / cpusPerTask)
    exec.executorLogs = event.executorInfo.logUrlMap
    exec.resources = event.executorInfo.resourcesInfo
    exec.attributes = event.executorInfo.attributes
    exec.resourceProfileId = rpId
    liveUpdate(exec, System.nanoTime())
  }

  override def onExecutorRemoved(event: SparkListenerExecutorRemoved): Unit = {
    liveExecutors.remove(event.executorId).foreach { exec =>
      val now = System.nanoTime()
      activeExecutorCount = math.max(0, activeExecutorCount - 1)
      exec.isActive = false
      exec.removeTime = new Date(event.time)
      exec.removeReason = event.reason
      update(exec, now, last = true)

      // Remove all RDD distributions that reference the removed executor, in case there wasn't
      // a corresponding event.
      liveRDDs.values.foreach { rdd =>
        if (rdd.removeDistribution(exec)) {
          update(rdd, now)
        }
      }
      // Remove all RDD partitions that reference the removed executor
      liveRDDs.values.foreach { rdd =>
        rdd.getPartitions.values
          .filter(_.executors.contains(event.executorId))
          .foreach { partition =>
            if (partition.executors.length == 1) {
              rdd.removePartition(partition.blockName)
              rdd.memoryUsed = addDeltaToValue(rdd.memoryUsed, partition.memoryUsed * -1)
              rdd.diskUsed = addDeltaToValue(rdd.diskUsed, partition.diskUsed * -1)
            } else {
              rdd.memoryUsed = addDeltaToValue(rdd.memoryUsed,
                (partition.memoryUsed / partition.executors.length) * -1)
              rdd.diskUsed = addDeltaToValue(rdd.diskUsed,
                (partition.diskUsed / partition.executors.length) * -1)
              partition.update(
                partition.executors.filter(!_.equals(event.executorId)),
                addDeltaToValue(partition.memoryUsed,
                  (partition.memoryUsed / partition.executors.length) * -1),
                addDeltaToValue(partition.diskUsed,
                  (partition.diskUsed / partition.executors.length) * -1))
            }
          }
        update(rdd, now)
      }
      if (isExecutorActiveForLiveStages(exec)) {
        // the executor was running for a currently active stage, so save it for now in
        // deadExecutors, and remove when there are no active stages overlapping with the
        // executor.
        deadExecutors.put(event.executorId, exec)
      }
    }
  }

  /** Was the specified executor active for any currently live stages? */
  private def isExecutorActiveForLiveStages(exec: LiveExecutor): Boolean = {
    liveStages.values.asScala.exists { stage =>
      stage.info.submissionTime.getOrElse(0L) < exec.removeTime.getTime
    }
  }

  // Note, the blacklisted functions are left here for backwards compatibility to allow
  // new history server to properly read and display older event logs.
  override def onExecutorBlacklisted(event: SparkListenerExecutorBlacklisted): Unit = {
    updateExecExclusionStatus(event.executorId, true)
  }

  override def onExecutorExcluded(event: SparkListenerExecutorExcluded): Unit = {
    updateExecExclusionStatus(event.executorId, true)
  }

  override def onExecutorBlacklistedForStage(
      event: SparkListenerExecutorBlacklistedForStage): Unit = {
    updateExclusionStatusForStage(event.stageId, event.stageAttemptId, event.executorId)
  }

  override def onExecutorExcludedForStage(
      event: SparkListenerExecutorExcludedForStage): Unit = {
    updateExclusionStatusForStage(event.stageId, event.stageAttemptId, event.executorId)
  }

  override def onNodeBlacklistedForStage(event: SparkListenerNodeBlacklistedForStage): Unit = {
    updateNodeExclusionStatusForStage(event.stageId, event.stageAttemptId, event.hostId)
  }

  override def onNodeExcludedForStage(event: SparkListenerNodeExcludedForStage): Unit = {
    updateNodeExclusionStatusForStage(event.stageId, event.stageAttemptId, event.hostId)
  }

  private def addExcludedStageTo(exec: LiveExecutor, stageId: Int, now: Long): Unit = {
    exec.excludedInStages += stageId
    liveUpdate(exec, now)
  }

  private def setStageBlackListStatus(stage: LiveStage, now: Long, executorIds: String*): Unit = {
    executorIds.foreach { executorId =>
      val executorStageSummary = stage.executorSummary(executorId)
      executorStageSummary.isExcluded = true
      maybeUpdate(executorStageSummary, now)
    }
    stage.excludedExecutors ++= executorIds
    maybeUpdate(stage, now)
  }

  private def setStageExcludedStatus(stage: LiveStage, now: Long, executorIds: String*): Unit = {
    executorIds.foreach { executorId =>
      val executorStageSummary = stage.executorSummary(executorId)
      executorStageSummary.isExcluded = true
      maybeUpdate(executorStageSummary, now)
    }
    stage.excludedExecutors ++= executorIds
    maybeUpdate(stage, now)
  }

  override def onExecutorUnblacklisted(event: SparkListenerExecutorUnblacklisted): Unit = {
    updateExecExclusionStatus(event.executorId, false)
  }

  override def onExecutorUnexcluded(event: SparkListenerExecutorUnexcluded): Unit = {
    updateExecExclusionStatus(event.executorId, false)
  }

  override def onNodeBlacklisted(event: SparkListenerNodeBlacklisted): Unit = {
    updateNodeExcluded(event.hostId, true)
  }

  override def onNodeExcluded(event: SparkListenerNodeExcluded): Unit = {
    updateNodeExcluded(event.hostId, true)
  }

  override def onNodeUnblacklisted(event: SparkListenerNodeUnblacklisted): Unit = {
    updateNodeExcluded(event.hostId, false)
  }

  override def onNodeUnexcluded(event: SparkListenerNodeUnexcluded): Unit = {
    updateNodeExcluded(event.hostId, false)
  }

  private def updateNodeExclusionStatusForStage(stageId: Int, stageAttemptId: Int,
      hostId: String): Unit = {
    val now = System.nanoTime()

    // Implicitly exclude every available executor for the stage associated with this node
    Option(liveStages.get((stageId, stageAttemptId))).foreach { stage =>
      val executorIds = liveExecutors.values.filter(exec => exec.host == hostId
        && exec.executorId != SparkContext.DRIVER_IDENTIFIER).map(_.executorId).toSeq
      setStageExcludedStatus(stage, now, executorIds: _*)
    }
    liveExecutors.values.filter(exec => exec.hostname == hostId
      && exec.executorId != SparkContext.DRIVER_IDENTIFIER).foreach { exec =>
      addExcludedStageTo(exec, stageId, now)
    }
  }

  private def updateExclusionStatusForStage(stageId: Int, stageAttemptId: Int,
      execId: String): Unit = {
    val now = System.nanoTime()

    Option(liveStages.get((stageId, stageAttemptId))).foreach { stage =>
      setStageExcludedStatus(stage, now, execId)
    }
    liveExecutors.get(execId).foreach { exec =>
      addExcludedStageTo(exec, stageId, now)
    }
  }

  private def updateExecExclusionStatus(execId: String, excluded: Boolean): Unit = {
    liveExecutors.get(execId).foreach { exec =>
      updateExecExclusionStatus(exec, excluded, System.nanoTime())
    }
  }

  private def updateExecExclusionStatus(exec: LiveExecutor, excluded: Boolean, now: Long): Unit = {
    // Since we are sending both blacklisted and excluded events for backwards compatibility
    // we need to protect against double counting so don't increment if already in
    // that state. Also protects against executor being excluded and then node being
    // separately excluded which could result in this being called twice for same
    // executor.
    if (exec.isExcluded != excluded) {
      if (excluded) {
        appStatusSource.foreach(_.BLACKLISTED_EXECUTORS.inc())
        appStatusSource.foreach(_.EXCLUDED_EXECUTORS.inc())
      } else {
        appStatusSource.foreach(_.UNBLACKLISTED_EXECUTORS.inc())
        appStatusSource.foreach(_.UNEXCLUDED_EXECUTORS.inc())
      }
      exec.isExcluded = excluded
      liveUpdate(exec, now)
    }
  }

  private def updateNodeExcluded(host: String, excluded: Boolean): Unit = {
    val now = System.nanoTime()

    // Implicitly (un)exclude every executor associated with the node.
    liveExecutors.values.foreach { exec =>
      if (exec.hostname == host && exec.executorId != SparkContext.DRIVER_IDENTIFIER) {
        updateExecExclusionStatus(exec, excluded, now)
      }
    }
  }

  override def onJobStart(event: SparkListenerJobStart): Unit = {
    val now = System.nanoTime()

    // Compute (a potential over-estimate of) the number of tasks that will be run by this job.
    // This may be an over-estimate because the job start event references all of the result
    // stages' transitive stage dependencies, but some of these stages might be skipped if their
    // output is available from earlier runs.
    // See https://github.com/apache/spark/pull/3009 for a more extensive discussion.
    val numTasks = {
      val missingStages = event.stageInfos.filter(_.completionTime.isEmpty)
      missingStages.map(_.numTasks).sum
    }

    val lastStageInfo = event.stageInfos.sortBy(_.stageId).lastOption
    val jobName = lastStageInfo.map(_.name).getOrElse("")
    val description = Option(event.properties)
      .flatMap { p => Option(p.getProperty(SparkContext.SPARK_JOB_DESCRIPTION)) }
    val jobGroup = Option(event.properties)
      .flatMap { p => Option(p.getProperty(SparkContext.SPARK_JOB_GROUP_ID)) }
    val sqlExecutionId = Option(event.properties)
      .flatMap(p => Option(p.getProperty(SQL_EXECUTION_ID_KEY)).map(_.toLong))

    val job = new LiveJob(
      event.jobId,
      jobName,
      description,
      if (event.time > 0) Some(new Date(event.time)) else None,
      event.stageIds,
      jobGroup,
      numTasks,
      sqlExecutionId)
    liveJobs.put(event.jobId, job)
    liveUpdate(job, now)

    event.stageInfos.foreach { stageInfo =>
      // A new job submission may re-use an existing stage, so this code needs to do an update
      // instead of just a write.
      val stage = getOrCreateStage(stageInfo)
      stage.jobs :+= job
      stage.jobIds += event.jobId
      liveUpdate(stage, now)
    }

    // Create the graph data for all the job's stages.
    event.stageInfos.foreach { stage =>
      val graph = RDDOperationGraph.makeOperationGraph(stage, maxGraphRootNodes)
      val uigraph = new RDDOperationGraphWrapper(
        stage.stageId,
        graph.edges,
        graph.outgoingEdges,
        graph.incomingEdges,
        newRDDOperationCluster(graph.rootCluster))
      kvstore.write(uigraph)
    }
  }

  private def newRDDOperationCluster(cluster: RDDOperationCluster): RDDOperationClusterWrapper = {
    new RDDOperationClusterWrapper(
      cluster.id,
      cluster.name,
      cluster.childNodes,
      cluster.childClusters.map(newRDDOperationCluster))
  }

  override def onJobEnd(event: SparkListenerJobEnd): Unit = {
    liveJobs.remove(event.jobId).foreach { job =>
      val now = System.nanoTime()

      // Check if there are any pending stages that match this job; mark those as skipped.
      val it = liveStages.entrySet.iterator()
      while (it.hasNext()) {
        val e = it.next()
        if (job.stageIds.contains(e.getKey()._1)) {
          val stage = e.getValue()
          if (v1.StageStatus.PENDING.equals(stage.status)) {
            stage.status = v1.StageStatus.SKIPPED
            job.skippedStages += stage.info.stageId
            job.skippedTasks += stage.info.numTasks
            job.activeStages -= 1

            pools.get(stage.schedulingPool).foreach { pool =>
              pool.stageIds = pool.stageIds - stage.info.stageId
              update(pool, now)
            }

            it.remove()
            update(stage, now, last = true)
          }
        }
      }

      job.status = event.jobResult match {
        case JobSucceeded =>
          appStatusSource.foreach{_.SUCCEEDED_JOBS.inc()}
          JobExecutionStatus.SUCCEEDED
        case JobFailed(_) =>
          appStatusSource.foreach{_.FAILED_JOBS.inc()}
          JobExecutionStatus.FAILED
      }

      job.completionTime = if (event.time > 0) Some(new Date(event.time)) else None

      for {
        source <- appStatusSource
        submissionTime <- job.submissionTime
        completionTime <- job.completionTime
      } {
        source.JOB_DURATION.value.set(completionTime.getTime() - submissionTime.getTime())
      }

      // update global app status counters
      appStatusSource.foreach { source =>
        source.COMPLETED_STAGES.inc(job.completedStages.size)
        source.FAILED_STAGES.inc(job.failedStages)
        source.COMPLETED_TASKS.inc(job.completedTasks)
        source.FAILED_TASKS.inc(job.failedTasks)
        source.KILLED_TASKS.inc(job.killedTasks)
        source.SKIPPED_TASKS.inc(job.skippedTasks)
        source.SKIPPED_STAGES.inc(job.skippedStages.size)
      }
      update(job, now, last = true)
      if (job.status == JobExecutionStatus.SUCCEEDED) {
        appSummary = new AppSummary(appSummary.numCompletedJobs + 1, appSummary.numCompletedStages)
        kvstore.write(appSummary)
      }
    }
  }

  override def onStageSubmitted(event: SparkListenerStageSubmitted): Unit = {
    val now = System.nanoTime()
    val stage = getOrCreateStage(event.stageInfo)
    stage.status = v1.StageStatus.ACTIVE
    stage.schedulingPool = Option(event.properties).flatMap { p =>
      Option(p.getProperty(SparkContext.SPARK_SCHEDULER_POOL))
    }.getOrElse(SparkUI.DEFAULT_POOL_NAME)

    // Look at all active jobs to find the ones that mention this stage.
    stage.jobs = liveJobs.values
      .filter(_.stageIds.contains(event.stageInfo.stageId))
      .toSeq
    stage.jobIds = stage.jobs.map(_.jobId).toSet

    stage.description = Option(event.properties).flatMap { p =>
      Option(p.getProperty(SparkContext.SPARK_JOB_DESCRIPTION))
    }

    stage.jobs.foreach { job =>
      job.completedStages = job.completedStages - event.stageInfo.stageId
      job.activeStages += 1
      liveUpdate(job, now)
    }

    val pool = pools.getOrElseUpdate(stage.schedulingPool, new SchedulerPool(stage.schedulingPool))
    pool.stageIds = pool.stageIds + event.stageInfo.stageId
    update(pool, now)

    event.stageInfo.rddInfos.foreach { info =>
      if (info.storageLevel.isValid) {
        liveUpdate(liveRDDs.getOrElseUpdate(info.id, new LiveRDD(info, info.storageLevel)), now)
      }
    }

    liveUpdate(stage, now)
  }

  override def onTaskStart(event: SparkListenerTaskStart): Unit = {
    val now = System.nanoTime()
    val task = new LiveTask(event.taskInfo, event.stageId, event.stageAttemptId, lastUpdateTime)
    liveTasks.put(event.taskInfo.taskId, task)
    liveUpdate(task, now)

    Option(liveStages.get((event.stageId, event.stageAttemptId))).foreach { stage =>
      if (event.taskInfo.speculative) {
        stage.speculationStageSummary.numActiveTasks += 1
        stage.speculationStageSummary.numTasks += 1
        update(stage.speculationStageSummary, now)
      }

      stage.activeTasks += 1
      stage.firstLaunchTime = math.min(stage.firstLaunchTime, event.taskInfo.launchTime)

      val locality = event.taskInfo.taskLocality.toString()
      val count = stage.localitySummary.getOrElse(locality, 0L) + 1L
      stage.localitySummary = stage.localitySummary ++ Map(locality -> count)
      stage.activeTasksPerExecutor(event.taskInfo.executorId) += 1
      maybeUpdate(stage, now)

      stage.jobs.foreach { job =>
        job.activeTasks += 1
        maybeUpdate(job, now)
      }

      if (stage.savedTasks.incrementAndGet() > maxTasksPerStage && !stage.cleaning) {
        stage.cleaning = true
        kvstore.doAsync {
          cleanupTasks(stage)
        }
      }
    }

    liveExecutors.get(event.taskInfo.executorId).foreach { exec =>
      exec.activeTasks += 1
      exec.totalTasks += 1
      maybeUpdate(exec, now)
    }
  }

  override def onTaskGettingResult(event: SparkListenerTaskGettingResult): Unit = {
    // Call update on the task so that the "getting result" time is written to the store; the
    // value is part of the mutable TaskInfo state that the live entity already references.
    liveTasks.get(event.taskInfo.taskId).foreach { task =>
      maybeUpdate(task, System.nanoTime())
    }
  }

  override def onTaskEnd(event: SparkListenerTaskEnd): Unit = {
    // TODO: can this really happen?
    if (event.taskInfo == null) {
      return
    }

    val now = System.nanoTime()

    val metricsDelta = liveTasks.remove(event.taskInfo.taskId).map { task =>
      task.info = event.taskInfo

      val errorMessage = event.reason match {
        case Success =>
          None
        case k: TaskKilled =>
          Some(k.reason)
        case e: ExceptionFailure => // Handle ExceptionFailure because we might have accumUpdates
          Some(e.toErrorString)
        case e: TaskFailedReason => // All other failure cases
          Some(e.toErrorString)
        case other =>
          logInfo(s"Unhandled task end reason: $other")
          None
      }
      task.errorMessage = errorMessage
      val delta = task.updateMetrics(event.taskMetrics)
      update(task, now, last = true)
      delta
    }.orNull

    val (completedDelta, failedDelta, killedDelta) = event.reason match {
      case Success =>
        (1, 0, 0)
      case _: TaskKilled =>
        (0, 0, 1)
      case _: TaskCommitDenied =>
        (0, 0, 1)
      case _ =>
        (0, 1, 0)
    }

    Option(liveStages.get((event.stageId, event.stageAttemptId))).foreach { stage =>
      if (metricsDelta != null) {
        stage.metrics = LiveEntityHelpers.addMetrics(stage.metrics, metricsDelta)
      }
      stage.activeTasks -= 1
      stage.completedTasks += completedDelta
      if (completedDelta > 0) {
        stage.completedIndices.add(event.taskInfo.index)
      }
      stage.failedTasks += failedDelta
      stage.killedTasks += killedDelta
      if (killedDelta > 0) {
        stage.killedSummary = killedTasksSummary(event.reason, stage.killedSummary)
      }
      stage.activeTasksPerExecutor(event.taskInfo.executorId) -= 1

      stage.peakExecutorMetrics.compareAndUpdatePeakValues(event.taskExecutorMetrics)
      stage.executorSummary(event.taskInfo.executorId).peakExecutorMetrics
        .compareAndUpdatePeakValues(event.taskExecutorMetrics)
      // [SPARK-24415] Wait for all tasks to finish before removing stage from live list
      val removeStage =
        stage.activeTasks == 0 &&
          (v1.StageStatus.COMPLETE.equals(stage.status) ||
            v1.StageStatus.FAILED.equals(stage.status))
      if (removeStage) {
        update(stage, now, last = true)
      } else {
        maybeUpdate(stage, now)
      }

      // Store both stage ID and task index in a single long variable for tracking at job level.
      val taskIndex = (event.stageId.toLong << Integer.SIZE) | event.taskInfo.index
      stage.jobs.foreach { job =>
        job.activeTasks -= 1
        job.completedTasks += completedDelta
        if (completedDelta > 0) {
          job.completedIndices.add(taskIndex)
        }
        job.failedTasks += failedDelta
        job.killedTasks += killedDelta
        if (killedDelta > 0) {
          job.killedSummary = killedTasksSummary(event.reason, job.killedSummary)
        }
        if (removeStage) {
          update(job, now)
        } else {
          maybeUpdate(job, now)
        }
      }

      val esummary = stage.executorSummary(event.taskInfo.executorId)
      esummary.taskTime += event.taskInfo.duration
      esummary.succeededTasks += completedDelta
      esummary.failedTasks += failedDelta
      esummary.killedTasks += killedDelta
      if (metricsDelta != null) {
        esummary.metrics = LiveEntityHelpers.addMetrics(esummary.metrics, metricsDelta)
      }

      val isLastTask = stage.activeTasksPerExecutor(event.taskInfo.executorId) == 0

      // If the last task of the executor finished, then update the esummary
      // for both live and history events.
      if (isLastTask) {
        update(esummary, now)
      } else {
        maybeUpdate(esummary, now)
      }

      if (event.taskInfo.speculative) {
        stage.speculationStageSummary.numActiveTasks -= 1
        stage.speculationStageSummary.numCompletedTasks += completedDelta
        stage.speculationStageSummary.numFailedTasks += failedDelta
        stage.speculationStageSummary.numKilledTasks += killedDelta
        update(stage.speculationStageSummary, now)
      }

      if (!stage.cleaning && stage.savedTasks.get() > maxTasksPerStage) {
        stage.cleaning = true
        kvstore.doAsync {
          cleanupTasks(stage)
        }
      }
      if (removeStage) {
        liveStages.remove((event.stageId, event.stageAttemptId))
      }
    }

    liveExecutors.get(event.taskInfo.executorId).foreach { exec =>
      exec.activeTasks -= 1
      exec.completedTasks += completedDelta
      exec.failedTasks += failedDelta
      exec.totalDuration += event.taskInfo.duration
      exec.peakExecutorMetrics.compareAndUpdatePeakValues(event.taskExecutorMetrics)

      // Note: For resubmitted tasks, we continue to use the metrics that belong to the
      // first attempt of this task. This may not be 100% accurate because the first attempt
      // could have failed half-way through. The correct fix would be to keep track of the
      // metrics added by each attempt, but this is much more complicated.
      if (event.reason != Resubmitted) {
        if (event.taskMetrics != null) {
          val readMetrics = event.taskMetrics.shuffleReadMetrics
          exec.totalGcTime += event.taskMetrics.jvmGCTime
          exec.totalInputBytes += event.taskMetrics.inputMetrics.bytesRead
          exec.totalShuffleRead += readMetrics.localBytesRead + readMetrics.remoteBytesRead
          exec.totalShuffleWrite += event.taskMetrics.shuffleWriteMetrics.bytesWritten
        }
      }

      // Force an update on both live and history applications when the number of active tasks
      // reaches 0. This is checked in some tests (e.g. SQLTestUtilsBase) so it needs to be
      // reliably up to date.
      if (exec.activeTasks == 0) {
        update(exec, now)
      } else {
        maybeUpdate(exec, now)
      }
    }
  }

  override def onStageCompleted(event: SparkListenerStageCompleted): Unit = {
    val maybeStage =
      Option(liveStages.get((event.stageInfo.stageId, event.stageInfo.attemptNumber)))
    maybeStage.foreach { stage =>
      val now = System.nanoTime()
      stage.info = event.stageInfo

      // We have to update the stage status AFTER we create all the executorSummaries
      // because stage deletion deletes whatever summaries it finds when the status is completed.
      stage.executorSummaries.values.foreach(update(_, now))

      // Because of SPARK-20205, old event logs may contain valid stages without a submission time
      // in their start event. In those cases, we can only detect whether a stage was skipped by
      // waiting until the completion event, at which point the field would have been set.
      stage.status = event.stageInfo.failureReason match {
        case Some(_) => v1.StageStatus.FAILED
        case _ if event.stageInfo.submissionTime.isDefined => v1.StageStatus.COMPLETE
        case _ => v1.StageStatus.SKIPPED
      }

      stage.jobs.foreach { job =>
        stage.status match {
          case v1.StageStatus.COMPLETE =>
            job.completedStages += event.stageInfo.stageId
          case v1.StageStatus.SKIPPED =>
            job.skippedStages += event.stageInfo.stageId
            job.skippedTasks += event.stageInfo.numTasks
          case _ =>
            job.failedStages += 1
        }
        job.activeStages -= 1
        liveUpdate(job, now)
      }

      pools.get(stage.schedulingPool).foreach { pool =>
        pool.stageIds = pool.stageIds - event.stageInfo.stageId
        update(pool, now)
      }

      val executorIdsForStage = stage.excludedExecutors
      executorIdsForStage.foreach { executorId =>
        liveExecutors.get(executorId).foreach { exec =>
          removeExcludedStageFrom(exec, event.stageInfo.stageId, now)
        }
      }

      // Remove stage only if there are no active tasks remaining
      val removeStage = stage.activeTasks == 0
      update(stage, now, last = removeStage)
      if (removeStage) {
        liveStages.remove((event.stageInfo.stageId, event.stageInfo.attemptNumber))
      }
      if (stage.status == v1.StageStatus.COMPLETE) {
        appSummary = new AppSummary(appSummary.numCompletedJobs, appSummary.numCompletedStages + 1)
        kvstore.write(appSummary)
      }
    }

    // remove any dead executors that were not running for any currently active stages
    deadExecutors.retain((execId, exec) => isExecutorActiveForLiveStages(exec))
  }

  private def removeExcludedStageFrom(exec: LiveExecutor, stageId: Int, now: Long) = {
    exec.excludedInStages -= stageId
    liveUpdate(exec, now)
  }

  override def onBlockManagerAdded(event: SparkListenerBlockManagerAdded): Unit = {
    // This needs to set fields that are already set by onExecutorAdded because the driver is
    // considered an "executor" in the UI, but does not have a SparkListenerExecutorAdded event.
    val exec = getOrCreateExecutor(event.blockManagerId.executorId, event.time)
    exec.hostPort = event.blockManagerId.hostPort
    event.maxOnHeapMem.foreach { _ =>
      exec.totalOnHeap = event.maxOnHeapMem.get
      exec.totalOffHeap = event.maxOffHeapMem.get
      // SPARK-30594: whenever(first time or re-register) a BlockManager added, all blocks
      // from this BlockManager will be reported to driver later. So, we should clean up
      // used memory to avoid overlapped count.
      exec.usedOnHeap = 0
      exec.usedOffHeap = 0
    }
    exec.isActive = true
    exec.maxMemory = event.maxMem
    liveUpdate(exec, System.nanoTime())
  }

  override def onBlockManagerRemoved(event: SparkListenerBlockManagerRemoved): Unit = {
    // Nothing to do here. Covered by onExecutorRemoved.
  }

  override def onUnpersistRDD(event: SparkListenerUnpersistRDD): Unit = {
    liveRDDs.remove(event.rddId).foreach { liveRDD =>
      val storageLevel = liveRDD.info.storageLevel

      // Use RDD partition info to update executor block info.
      liveRDD.getPartitions().foreach { case (_, part) =>
        part.executors.foreach { executorId =>
          liveExecutors.get(executorId).foreach { exec =>
            exec.rddBlocks = exec.rddBlocks - 1
          }
        }
      }

      val now = System.nanoTime()

      // Use RDD distribution to update executor memory and disk usage info.
      liveRDD.getDistributions().foreach { case (executorId, rddDist) =>
        liveExecutors.get(executorId).foreach { exec =>
          if (exec.hasMemoryInfo) {
            if (storageLevel.useOffHeap) {
              exec.usedOffHeap = addDeltaToValue(exec.usedOffHeap, -rddDist.offHeapUsed)
            } else {
              exec.usedOnHeap = addDeltaToValue(exec.usedOnHeap, -rddDist.onHeapUsed)
            }
          }
          exec.memoryUsed = addDeltaToValue(exec.memoryUsed, -rddDist.memoryUsed)
          exec.diskUsed = addDeltaToValue(exec.diskUsed, -rddDist.diskUsed)
          maybeUpdate(exec, now)
        }
      }
    }

    kvstore.delete(classOf[RDDStorageInfoWrapper], event.rddId)
  }

  override def onExecutorMetricsUpdate(event: SparkListenerExecutorMetricsUpdate): Unit = {
    val now = System.nanoTime()

    event.accumUpdates.foreach { case (taskId, sid, sAttempt, accumUpdates) =>
      liveTasks.get(taskId).foreach { task =>
        val metrics = TaskMetrics.fromAccumulatorInfos(accumUpdates)
        val delta = task.updateMetrics(metrics)
        maybeUpdate(task, now)

        Option(liveStages.get((sid, sAttempt))).foreach { stage =>
          stage.metrics = LiveEntityHelpers.addMetrics(stage.metrics, delta)
          maybeUpdate(stage, now)

          val esummary = stage.executorSummary(event.execId)
          esummary.metrics = LiveEntityHelpers.addMetrics(esummary.metrics, delta)
          maybeUpdate(esummary, now)
        }
      }
    }

    // check if there is a new peak value for any of the executor level memory metrics
    // for the live UI. SparkListenerExecutorMetricsUpdate events are only processed
    // for the live UI.
    event.executorUpdates.foreach { case (key, peakUpdates) =>
      liveExecutors.get(event.execId).foreach { exec =>
        if (exec.peakExecutorMetrics.compareAndUpdatePeakValues(peakUpdates)) {
          update(exec, now)
        }
      }

      // Update stage level peak executor metrics.
      updateStageLevelPeakExecutorMetrics(key._1, key._2, event.execId, peakUpdates, now)
    }

    // Flush updates if necessary. Executor heartbeat is an event that happens periodically. Flush
    // here to ensure the staleness of Spark UI doesn't last more than
    // `max(heartbeat interval, liveUpdateMinFlushPeriod)`.
    if (now - lastFlushTimeNs > liveUpdateMinFlushPeriod) {
      flush(maybeUpdate(_, now))
      // Re-get the current system time because `flush` may be slow and `now` is stale.
      lastFlushTimeNs = System.nanoTime()
    }
  }

  override def onStageExecutorMetrics(event: SparkListenerStageExecutorMetrics): Unit = {
    val now = System.nanoTime()

    // check if there is a new peak value for any of the executor level memory metrics,
    // while reading from the log. SparkListenerStageExecutorMetrics are only processed
    // when reading logs.
    liveExecutors.get(event.execId).orElse(
      deadExecutors.get(event.execId)).foreach { exec =>
      if (exec.peakExecutorMetrics.compareAndUpdatePeakValues(event.executorMetrics)) {
        update(exec, now)
      }
    }

    // Update stage level peak executor metrics.
    updateStageLevelPeakExecutorMetrics(
      event.stageId, event.stageAttemptId, event.execId, event.executorMetrics, now)
  }

  private def updateStageLevelPeakExecutorMetrics(
      stageId: Int,
      stageAttemptId: Int,
      executorId: String,
      executorMetrics: ExecutorMetrics,
      now: Long): Unit = {
    Option(liveStages.get((stageId, stageAttemptId))).foreach { stage =>
      if (stage.peakExecutorMetrics.compareAndUpdatePeakValues(executorMetrics)) {
        update(stage, now)
      }
      val esummary = stage.executorSummary(executorId)
      if (esummary.peakExecutorMetrics.compareAndUpdatePeakValues(executorMetrics)) {
        update(esummary, now)
      }
    }
  }

  override def onBlockUpdated(event: SparkListenerBlockUpdated): Unit = {
    event.blockUpdatedInfo.blockId match {
      case block: RDDBlockId => updateRDDBlock(event, block)
      case stream: StreamBlockId => updateStreamBlock(event, stream)
      case broadcast: BroadcastBlockId => updateBroadcastBlock(event, broadcast)
      case _ =>
    }
  }

  /** Go through all `LiveEntity`s and use `entityFlushFunc(entity)` to flush them. */
  private def flush(entityFlushFunc: LiveEntity => Unit): Unit = {
    liveStages.values.asScala.foreach { stage =>
      entityFlushFunc(stage)
      stage.executorSummaries.values.foreach(entityFlushFunc)
    }
    liveJobs.values.foreach(entityFlushFunc)
    liveExecutors.values.foreach(entityFlushFunc)
    liveTasks.values.foreach(entityFlushFunc)
    liveRDDs.values.foreach(entityFlushFunc)
    pools.values.foreach(entityFlushFunc)
  }

  /**
   * Shortcut to get active stages quickly in a live application, for use by the console
   * progress bar.
   */
  def activeStages(): Seq[v1.StageData] = {
    liveStages.values.asScala
      .filter(s => Option(s.info).exists(_.submissionTime.isDefined))
      .map(_.toApi())
      .toList
      .sortBy(_.stageId)
  }

  /**
   * Apply a delta to a value, but ensure that it doesn't go negative.
   */
  private def addDeltaToValue(old: Long, delta: Long): Long = math.max(0, old + delta)

  private def updateRDDBlock(event: SparkListenerBlockUpdated, block: RDDBlockId): Unit = {
    val now = System.nanoTime()
    val executorId = event.blockUpdatedInfo.blockManagerId.executorId

    // Whether values are being added to or removed from the existing accounting.
    val storageLevel = event.blockUpdatedInfo.storageLevel
    val diskDelta = event.blockUpdatedInfo.diskSize * (if (storageLevel.useDisk) 1 else -1)
    val memoryDelta = event.blockUpdatedInfo.memSize * (if (storageLevel.useMemory) 1 else -1)

    // We need information about the executor to update some memory accounting values in the
    // RDD info, so read that beforehand.
    val maybeExec = liveExecutors.get(executorId)
    var rddBlocksDelta = 0

    // Update the executor stats first, since they are used to calculate the free memory
    // on tracked RDD distributions.
    maybeExec.foreach { exec =>
      updateExecutorMemoryDiskInfo(exec, storageLevel, memoryDelta, diskDelta)
    }

    // Update the block entry in the RDD info, keeping track of the deltas above so that we
    // can update the executor information too.
    liveRDDs.get(block.rddId).foreach { rdd =>
      val partition = rdd.partition(block.name)

      val executors = if (storageLevel.isValid) {
        val current = partition.executors
        if (current.contains(executorId)) {
          current
        } else {
          rddBlocksDelta = 1
          current :+ executorId
        }
      } else {
        rddBlocksDelta = -1
        partition.executors.filter(_ != executorId)
      }

      // Only update the partition if it's still stored in some executor, otherwise get rid of it.
      if (executors.nonEmpty) {
        partition.update(executors,
          addDeltaToValue(partition.memoryUsed, memoryDelta),
          addDeltaToValue(partition.diskUsed, diskDelta))
      } else {
        rdd.removePartition(block.name)
      }

      maybeExec.foreach { exec =>
        if (exec.rddBlocks + rddBlocksDelta > 0) {
          val dist = rdd.distribution(exec)
          dist.memoryUsed = addDeltaToValue(dist.memoryUsed, memoryDelta)
          dist.diskUsed = addDeltaToValue(dist.diskUsed, diskDelta)

          if (exec.hasMemoryInfo) {
            if (storageLevel.useOffHeap) {
              dist.offHeapUsed = addDeltaToValue(dist.offHeapUsed, memoryDelta)
            } else {
              dist.onHeapUsed = addDeltaToValue(dist.onHeapUsed, memoryDelta)
            }
          }
          dist.lastUpdate = null
        } else {
          rdd.removeDistribution(exec)
        }

        // Trigger an update on other RDDs so that the free memory information is updated.
        liveRDDs.values.foreach { otherRdd =>
          if (otherRdd.info.id != block.rddId) {
            otherRdd.distributionOpt(exec).foreach { dist =>
              dist.lastUpdate = null
              update(otherRdd, now)
            }
          }
        }
      }

      rdd.memoryUsed = addDeltaToValue(rdd.memoryUsed, memoryDelta)
      rdd.diskUsed = addDeltaToValue(rdd.diskUsed, diskDelta)
      update(rdd, now)
    }

    // Finish updating the executor now that we know the delta in the number of blocks.
    maybeExec.foreach { exec =>
      exec.rddBlocks += rddBlocksDelta
      maybeUpdate(exec, now)
    }
  }

  private def getOrCreateExecutor(executorId: String, addTime: Long): LiveExecutor = {
    liveExecutors.getOrElseUpdate(executorId, {
      activeExecutorCount += 1
      new LiveExecutor(executorId, addTime)
    })
  }

  private def getOrCreateOtherProcess(processId: String,
      addTime: Long): LiveMiscellaneousProcess = {
    liveMiscellaneousProcess.getOrElseUpdate(processId, {
      new LiveMiscellaneousProcess(processId, addTime)
    })
  }

  private def updateStreamBlock(event: SparkListenerBlockUpdated, stream: StreamBlockId): Unit = {
    val storageLevel = event.blockUpdatedInfo.storageLevel
    if (storageLevel.isValid) {
      val data = new StreamBlockData(
        stream.name,
        event.blockUpdatedInfo.blockManagerId.executorId,
        event.blockUpdatedInfo.blockManagerId.hostPort,
        storageLevel.description,
        storageLevel.useMemory,
        storageLevel.useDisk,
        storageLevel.deserialized,
        event.blockUpdatedInfo.memSize,
        event.blockUpdatedInfo.diskSize)
      kvstore.write(data)
    } else {
      kvstore.delete(classOf[StreamBlockData],
        Array(stream.name, event.blockUpdatedInfo.blockManagerId.executorId))
    }
  }

  private def updateBroadcastBlock(
      event: SparkListenerBlockUpdated,
      broadcast: BroadcastBlockId): Unit = {
    val executorId = event.blockUpdatedInfo.blockManagerId.executorId
    liveExecutors.get(executorId).foreach { exec =>
      val now = System.nanoTime()
      val storageLevel = event.blockUpdatedInfo.storageLevel

      // Whether values are being added to or removed from the existing accounting.
      val diskDelta = event.blockUpdatedInfo.diskSize * (if (storageLevel.useDisk) 1 else -1)
      val memoryDelta = event.blockUpdatedInfo.memSize * (if (storageLevel.useMemory) 1 else -1)

      updateExecutorMemoryDiskInfo(exec, storageLevel, memoryDelta, diskDelta)
      maybeUpdate(exec, now)
    }
  }

  private[spark] def updateExecutorMemoryDiskInfo(
      exec: LiveExecutor,
      storageLevel: StorageLevel,
      memoryDelta: Long,
      diskDelta: Long): Unit = {
    if (exec.hasMemoryInfo) {
      if (storageLevel.useOffHeap) {
        exec.usedOffHeap = addDeltaToValue(exec.usedOffHeap, memoryDelta)
      } else {
        exec.usedOnHeap = addDeltaToValue(exec.usedOnHeap, memoryDelta)
      }
    }
    exec.memoryUsed = addDeltaToValue(exec.memoryUsed, memoryDelta)
    exec.diskUsed = addDeltaToValue(exec.diskUsed, diskDelta)
  }

  private def getOrCreateStage(info: StageInfo): LiveStage = {
    val stage = liveStages.computeIfAbsent((info.stageId, info.attemptNumber),
      (_: (Int, Int)) => new LiveStage(info))
    stage.info = info
    stage
  }

  private def killedTasksSummary(
      reason: TaskEndReason,
      oldSummary: Map[String, Int]): Map[String, Int] = {
    reason match {
      case k: TaskKilled =>
        oldSummary.updated(k.reason, oldSummary.getOrElse(k.reason, 0) + 1)
      case denied: TaskCommitDenied =>
        val reason = denied.toErrorString
        oldSummary.updated(reason, oldSummary.getOrElse(reason, 0) + 1)
      case _ =>
        oldSummary
    }
  }

  private def update(entity: LiveEntity, now: Long, last: Boolean = false): Unit = {
    entity.write(kvstore, now, checkTriggers = last)
  }

  /** Update a live entity only if it hasn't been updated in the last configured period. */
  private def maybeUpdate(entity: LiveEntity, now: Long): Unit = {
    if (live && liveUpdatePeriodNs >= 0 && now - entity.lastWriteTime > liveUpdatePeriodNs) {
      update(entity, now)
    }
  }

  /** Update an entity only if in a live app; avoids redundant writes when replaying logs. */
  private def liveUpdate(entity: LiveEntity, now: Long): Unit = {
    if (live) {
      update(entity, now)
    }
  }

  private def cleanupExecutors(count: Long): Unit = {
    // Because the limit is on the number of *dead* executors, we need to calculate whether
    // there are actually enough dead executors to be deleted.
    val threshold = conf.get(MAX_RETAINED_DEAD_EXECUTORS)
    val dead = count - activeExecutorCount

    if (dead > threshold) {
      val countToDelete = calculateNumberToRemove(dead, threshold)
      val toDelete = KVUtils.viewToSeq(kvstore.view(classOf[ExecutorSummaryWrapper]).index("active")
        .max(countToDelete).first(false).last(false))
      toDelete.foreach { e => kvstore.delete(e.getClass(), e.info.id) }
    }
  }

  private def cleanupJobs(count: Long): Unit = {
    val countToDelete = calculateNumberToRemove(count, conf.get(MAX_RETAINED_JOBS))
    if (countToDelete <= 0L) {
      return
    }

    val view = kvstore.view(classOf[JobDataWrapper]).index("completionTime").first(0L)
    val toDelete = KVUtils.viewToSeq(view, countToDelete.toInt) { j =>
      j.info.status != JobExecutionStatus.RUNNING && j.info.status != JobExecutionStatus.UNKNOWN
    }
    toDelete.foreach { j => kvstore.delete(j.getClass(), j.info.jobId) }
  }

  private case class StageCompletionTime(
      stageId: Int,
      attemptId: Int,
      completionTime: Long)

  private def cleanupStagesWithInMemoryStore(countToDelete: Long): Seq[Array[Int]] = {
    val stageArray = new ArrayBuffer[StageCompletionTime]()
    val stageDataCount = new mutable.HashMap[Int, Int]()
    KVUtils.foreach(kvstore.view(classOf[StageDataWrapper])) { s =>
      // Here we keep track of the total number of StageDataWrapper entries for each stage id.
      // This will be used in cleaning up the RDDOperationGraphWrapper data.
      if (stageDataCount.contains(s.info.stageId)) {
        stageDataCount(s.info.stageId) += 1
      } else {
        stageDataCount(s.info.stageId) = 1
      }
      if (s.info.status != v1.StageStatus.ACTIVE && s.info.status != v1.StageStatus.PENDING) {
        val candidate =
          StageCompletionTime(s.info.stageId, s.info.attemptId, s.completionTime)
        stageArray.append(candidate)
      }
    }

    // As the completion time of a skipped stage is always -1, we will remove skipped stages first.
    // This is safe since the job itself contains enough information to render skipped stages in the
    // UI.
    stageArray.sortBy(_.completionTime).take(countToDelete.toInt).map { s =>
      val key = Array(s.stageId, s.attemptId)
      kvstore.delete(classOf[StageDataWrapper], key)
      stageDataCount(s.stageId) -= 1
      // Check whether there are remaining attempts for the same stage. If there aren't, then
      // also delete the RDD graph data.
      if (stageDataCount(s.stageId) == 0) {
        kvstore.delete(classOf[RDDOperationGraphWrapper], s.stageId)
      }
      cleanupCachedQuantiles(key)
      key
    }.toSeq
  }

  private def cleanupStagesInKVStore(countToDelete: Long): Seq[Array[Int]] = {
    // As the completion time of a skipped stage is always -1, we will remove skipped stages first.
    // This is safe since the job itself contains enough information to render skipped stages in the
    // UI.
    val view = kvstore.view(classOf[StageDataWrapper]).index("completionTime")
    val stages = KVUtils.viewToSeq(view, countToDelete.toInt) { s =>
      s.info.status != v1.StageStatus.ACTIVE && s.info.status != v1.StageStatus.PENDING
    }

    stages.map { s =>
      val key = Array(s.info.stageId, s.info.attemptId)
      kvstore.delete(s.getClass(), key)

      // Check whether there are remaining attempts for the same stage. If there aren't, then
      // also delete the RDD graph data.
      val remainingAttempts = kvstore.view(classOf[StageDataWrapper])
        .index("stageId")
        .first(s.info.stageId)
        .last(s.info.stageId)
        .closeableIterator()

      val hasMoreAttempts = try {
        remainingAttempts.asScala.exists { other =>
          other.info.attemptId != s.info.attemptId
        }
      } finally {
        remainingAttempts.close()
      }

      if (!hasMoreAttempts) {
        kvstore.delete(classOf[RDDOperationGraphWrapper], s.info.stageId)
      }

      cleanupCachedQuantiles(key)
      key
    }
  }

  private def cleanupStages(count: Long): Unit = {
    val countToDelete = calculateNumberToRemove(count, conf.get(MAX_RETAINED_STAGES))
    if (countToDelete <= 0L) {
      return
    }

    // SPARK-36827: For better performance and avoiding OOM, here we use a optimized method for
    //              cleaning the StageDataWrapper and RDDOperationGraphWrapper data if Spark is
    //              using InMemoryStore.
    val stageIds = if (kvstore.usingInMemoryStore) {
      cleanupStagesWithInMemoryStore(countToDelete)
    } else {
      cleanupStagesInKVStore(countToDelete)
    }

    // Delete summaries in one pass, as deleting them for each stage is slow
    kvstore.removeAllByIndexValues(classOf[ExecutorStageSummaryWrapper], "stage", stageIds)

    // Delete tasks for all stages in one pass, as deleting them for each stage individually is slow
    kvstore.removeAllByIndexValues(classOf[TaskDataWrapper], TaskIndexNames.STAGE, stageIds)
  }

  private def cleanupTasks(stage: LiveStage): Unit = {
    val countToDelete = calculateNumberToRemove(stage.savedTasks.get(), maxTasksPerStage).toInt
    if (countToDelete > 0) {
      val stageKey = Array(stage.info.stageId, stage.info.attemptNumber)
      val view = kvstore.view(classOf[TaskDataWrapper])
        .index(TaskIndexNames.COMPLETION_TIME)
        .parent(stageKey)

      // Try to delete finished tasks only.
      val toDelete = KVUtils.viewToSeq(view, countToDelete) { t =>
        !live || t.status != TaskState.RUNNING.toString()
      }
      toDelete.foreach { t => kvstore.delete(t.getClass(), t.taskId) }
      stage.savedTasks.addAndGet(-toDelete.size)

      // If there are more running tasks than the configured limit, delete running tasks. This
      // should be extremely rare since the limit should generally far exceed the number of tasks
      // that can run in parallel.
      val remaining = countToDelete - toDelete.size
      if (remaining > 0) {
        val runningTasksToDelete = view.max(remaining).iterator().asScala.toList
        runningTasksToDelete.foreach { t => kvstore.delete(t.getClass(), t.taskId) }
        stage.savedTasks.addAndGet(-remaining)
      }

      // On live applications, cleanup any cached quantiles for the stage. This makes sure that
      // quantiles will be recalculated after tasks are replaced with newer ones.
      //
      // This is not needed in the SHS since caching only happens after the event logs are
      // completely processed.
      if (live) {
        cleanupCachedQuantiles(stageKey)
      }
    }
    stage.cleaning = false
  }

  private def cleanupCachedQuantiles(stageKey: Array[Int]): Unit = {
    val cachedQuantiles = KVUtils.viewToSeq(kvstore.view(classOf[CachedQuantile])
      .index("stage")
      .first(stageKey)
      .last(stageKey))
    cachedQuantiles.foreach { q =>
      kvstore.delete(q.getClass(), q.id)
    }
  }

  /**
   * Remove at least (retainedSize / 10) items to reduce friction. Because tracking may be done
   * asynchronously, this method may return 0 in case enough items have been deleted already.
   */
  private def calculateNumberToRemove(dataSize: Long, retainedSize: Long): Long = {
    if (dataSize > retainedSize) {
      math.max(retainedSize / 10L, dataSize - retainedSize)
    } else {
      0L
    }
  }

  private def onMiscellaneousProcessAdded(
      processInfoEvent: SparkListenerMiscellaneousProcessAdded): Unit = {
    val processInfo = processInfoEvent.info
    val miscellaneousProcess =
      getOrCreateOtherProcess(processInfoEvent.processId, processInfoEvent.time)
    miscellaneousProcess.processLogs = processInfo.logUrlInfo
    miscellaneousProcess.hostPort = processInfo.hostPort
    miscellaneousProcess.isActive = true
    miscellaneousProcess.totalCores = processInfo.cores
    update(miscellaneousProcess, System.nanoTime())
  }

}

相关信息

spark 源码目录

相关文章

spark AppHistoryServerPlugin 源码

spark AppStatusSource 源码

spark AppStatusStore 源码

spark AppStatusUtils 源码

spark ElementTrackingStore 源码

spark KVUtils 源码

spark LiveEntity 源码

spark storeTypes 源码

0  赞