spark AppStatusListener 源码
spark AppStatusListener 代码
文件路径:/core/src/main/scala/org/apache/spark/status/AppStatusListener.scala
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.spark.status
import java.util.Date
import java.util.concurrent.ConcurrentHashMap
import scala.collection.JavaConverters._
import scala.collection.mutable.{ArrayBuffer, HashMap}
import scala.collection.mutable
import org.apache.spark._
import org.apache.spark.executor.{ExecutorMetrics, TaskMetrics}
import org.apache.spark.internal.Logging
import org.apache.spark.internal.config.CPUS_PER_TASK
import org.apache.spark.internal.config.Status._
import org.apache.spark.resource.ResourceProfile.CPUS
import org.apache.spark.scheduler._
import org.apache.spark.status.api.v1
import org.apache.spark.storage._
import org.apache.spark.ui.SparkUI
import org.apache.spark.ui.scope._
/**
* A Spark listener that writes application information to a data store. The types written to the
* store are defined in the `storeTypes.scala` file and are based on the public REST API.
*
* @param lastUpdateTime When replaying logs, the log's last update time, so that the duration of
* unfinished tasks can be more accurately calculated (see SPARK-21922).
*/
private[spark] class AppStatusListener(
kvstore: ElementTrackingStore,
conf: SparkConf,
live: Boolean,
appStatusSource: Option[AppStatusSource] = None,
lastUpdateTime: Option[Long] = None) extends SparkListener with Logging {
private var sparkVersion = SPARK_VERSION
private var appInfo: v1.ApplicationInfo = null
private var appSummary = new AppSummary(0, 0)
private var defaultCpusPerTask: Int = 1
// How often to update live entities. -1 means "never update" when replaying applications,
// meaning only the last write will happen. For live applications, this avoids a few
// operations that we can live without when rapidly processing incoming task events.
private val liveUpdatePeriodNs = if (live) conf.get(LIVE_ENTITY_UPDATE_PERIOD) else -1L
/**
* Minimum time elapsed before stale UI data is flushed. This avoids UI staleness when incoming
* task events are not fired frequently.
*/
private val liveUpdateMinFlushPeriod = conf.get(LIVE_ENTITY_UPDATE_MIN_FLUSH_PERIOD)
private val maxTasksPerStage = conf.get(MAX_RETAINED_TASKS_PER_STAGE)
private val maxGraphRootNodes = conf.get(MAX_RETAINED_ROOT_NODES)
// Keep track of live entities, so that task metrics can be efficiently updated (without
// causing too many writes to the underlying store, and other expensive operations).
private val liveStages = new ConcurrentHashMap[(Int, Int), LiveStage]()
private val liveJobs = new HashMap[Int, LiveJob]()
private[spark] val liveExecutors = new HashMap[String, LiveExecutor]()
private val deadExecutors = new HashMap[String, LiveExecutor]()
private val liveTasks = new HashMap[Long, LiveTask]()
private val liveRDDs = new HashMap[Int, LiveRDD]()
private val pools = new HashMap[String, SchedulerPool]()
private val liveResourceProfiles = new HashMap[Int, LiveResourceProfile]()
private[spark] val liveMiscellaneousProcess = new HashMap[String, LiveMiscellaneousProcess]()
private val SQL_EXECUTION_ID_KEY = "spark.sql.execution.id"
// Keep the active executor count as a separate variable to avoid having to do synchronization
// around liveExecutors.
@volatile private var activeExecutorCount = 0
/** The last time when flushing `LiveEntity`s. This is to avoid flushing too frequently. */
private var lastFlushTimeNs = System.nanoTime()
kvstore.addTrigger(classOf[ExecutorSummaryWrapper], conf.get(MAX_RETAINED_DEAD_EXECUTORS))
{ count => cleanupExecutors(count) }
kvstore.addTrigger(classOf[JobDataWrapper], conf.get(MAX_RETAINED_JOBS)) { count =>
cleanupJobs(count)
}
kvstore.addTrigger(classOf[StageDataWrapper], conf.get(MAX_RETAINED_STAGES)) { count =>
cleanupStages(count)
}
kvstore.onFlush {
if (!live) {
val now = System.nanoTime()
flush(update(_, now))
}
}
override def onOtherEvent(event: SparkListenerEvent): Unit = event match {
case SparkListenerLogStart(version) => sparkVersion = version
case processInfoEvent: SparkListenerMiscellaneousProcessAdded =>
onMiscellaneousProcessAdded(processInfoEvent)
case _ =>
}
override def onApplicationStart(event: SparkListenerApplicationStart): Unit = {
assert(event.appId.isDefined, "Application without IDs are not supported.")
val attempt = v1.ApplicationAttemptInfo(
event.appAttemptId,
new Date(event.time),
new Date(-1),
new Date(event.time),
-1L,
event.sparkUser,
false,
sparkVersion)
appInfo = v1.ApplicationInfo(
event.appId.get,
event.appName,
None,
None,
None,
None,
Seq(attempt))
kvstore.write(new ApplicationInfoWrapper(appInfo))
kvstore.write(appSummary)
// Update the driver block manager with logs from this event. The SparkContext initialization
// code registers the driver before this event is sent.
event.driverLogs.foreach { logs =>
val driver = liveExecutors.get(SparkContext.DRIVER_IDENTIFIER)
driver.foreach { d =>
d.executorLogs = logs.toMap
d.attributes = event.driverAttributes.getOrElse(Map.empty).toMap
update(d, System.nanoTime())
}
}
}
override def onResourceProfileAdded(event: SparkListenerResourceProfileAdded): Unit = {
val maxTasks = if (event.resourceProfile.isCoresLimitKnown) {
Some(event.resourceProfile.maxTasksPerExecutor(conf))
} else {
None
}
val liveRP = new LiveResourceProfile(event.resourceProfile.id,
event.resourceProfile.executorResources, event.resourceProfile.taskResources, maxTasks)
liveResourceProfiles(event.resourceProfile.id) = liveRP
val rpInfo = new v1.ResourceProfileInfo(liveRP.resourceProfileId,
liveRP.executorResources, liveRP.taskResources)
kvstore.write(new ResourceProfileWrapper(rpInfo))
}
override def onEnvironmentUpdate(event: SparkListenerEnvironmentUpdate): Unit = {
val details = event.environmentDetails
val jvmInfo = Map(details("JVM Information"): _*)
val runtime = new v1.RuntimeInfo(
jvmInfo.get("Java Version").orNull,
jvmInfo.get("Java Home").orNull,
jvmInfo.get("Scala Version").orNull)
val envInfo = new v1.ApplicationEnvironmentInfo(
runtime,
details.getOrElse("Spark Properties", Nil),
details.getOrElse("Hadoop Properties", Nil),
details.getOrElse("System Properties", Nil),
details.getOrElse("Metrics Properties", Nil),
details.getOrElse("Classpath Entries", Nil),
Nil)
defaultCpusPerTask = envInfo.sparkProperties.toMap.get(CPUS_PER_TASK.key).map(_.toInt)
.getOrElse(defaultCpusPerTask)
kvstore.write(new ApplicationEnvironmentInfoWrapper(envInfo))
}
override def onApplicationEnd(event: SparkListenerApplicationEnd): Unit = {
val old = appInfo.attempts.head
val attempt = v1.ApplicationAttemptInfo(
old.attemptId,
old.startTime,
new Date(event.time),
new Date(event.time),
event.time - old.startTime.getTime(),
old.sparkUser,
true,
old.appSparkVersion)
appInfo = v1.ApplicationInfo(
appInfo.id,
appInfo.name,
None,
None,
None,
None,
Seq(attempt))
kvstore.write(new ApplicationInfoWrapper(appInfo))
}
override def onExecutorAdded(event: SparkListenerExecutorAdded): Unit = {
// This needs to be an update in case an executor re-registers after the driver has
// marked it as "dead".
val exec = getOrCreateExecutor(event.executorId, event.time)
exec.host = event.executorInfo.executorHost
exec.isActive = true
exec.totalCores = event.executorInfo.totalCores
val rpId = event.executorInfo.resourceProfileId
val liveRP = liveResourceProfiles.get(rpId)
val cpusPerTask = liveRP.flatMap(_.taskResources.get(CPUS))
.map(_.amount.toInt).getOrElse(defaultCpusPerTask)
val maxTasksPerExec = liveRP.flatMap(_.maxTasksPerExecutor)
exec.maxTasks = maxTasksPerExec.getOrElse(event.executorInfo.totalCores / cpusPerTask)
exec.executorLogs = event.executorInfo.logUrlMap
exec.resources = event.executorInfo.resourcesInfo
exec.attributes = event.executorInfo.attributes
exec.resourceProfileId = rpId
liveUpdate(exec, System.nanoTime())
}
override def onExecutorRemoved(event: SparkListenerExecutorRemoved): Unit = {
liveExecutors.remove(event.executorId).foreach { exec =>
val now = System.nanoTime()
activeExecutorCount = math.max(0, activeExecutorCount - 1)
exec.isActive = false
exec.removeTime = new Date(event.time)
exec.removeReason = event.reason
update(exec, now, last = true)
// Remove all RDD distributions that reference the removed executor, in case there wasn't
// a corresponding event.
liveRDDs.values.foreach { rdd =>
if (rdd.removeDistribution(exec)) {
update(rdd, now)
}
}
// Remove all RDD partitions that reference the removed executor
liveRDDs.values.foreach { rdd =>
rdd.getPartitions.values
.filter(_.executors.contains(event.executorId))
.foreach { partition =>
if (partition.executors.length == 1) {
rdd.removePartition(partition.blockName)
rdd.memoryUsed = addDeltaToValue(rdd.memoryUsed, partition.memoryUsed * -1)
rdd.diskUsed = addDeltaToValue(rdd.diskUsed, partition.diskUsed * -1)
} else {
rdd.memoryUsed = addDeltaToValue(rdd.memoryUsed,
(partition.memoryUsed / partition.executors.length) * -1)
rdd.diskUsed = addDeltaToValue(rdd.diskUsed,
(partition.diskUsed / partition.executors.length) * -1)
partition.update(
partition.executors.filter(!_.equals(event.executorId)),
addDeltaToValue(partition.memoryUsed,
(partition.memoryUsed / partition.executors.length) * -1),
addDeltaToValue(partition.diskUsed,
(partition.diskUsed / partition.executors.length) * -1))
}
}
update(rdd, now)
}
if (isExecutorActiveForLiveStages(exec)) {
// the executor was running for a currently active stage, so save it for now in
// deadExecutors, and remove when there are no active stages overlapping with the
// executor.
deadExecutors.put(event.executorId, exec)
}
}
}
/** Was the specified executor active for any currently live stages? */
private def isExecutorActiveForLiveStages(exec: LiveExecutor): Boolean = {
liveStages.values.asScala.exists { stage =>
stage.info.submissionTime.getOrElse(0L) < exec.removeTime.getTime
}
}
// Note, the blacklisted functions are left here for backwards compatibility to allow
// new history server to properly read and display older event logs.
override def onExecutorBlacklisted(event: SparkListenerExecutorBlacklisted): Unit = {
updateExecExclusionStatus(event.executorId, true)
}
override def onExecutorExcluded(event: SparkListenerExecutorExcluded): Unit = {
updateExecExclusionStatus(event.executorId, true)
}
override def onExecutorBlacklistedForStage(
event: SparkListenerExecutorBlacklistedForStage): Unit = {
updateExclusionStatusForStage(event.stageId, event.stageAttemptId, event.executorId)
}
override def onExecutorExcludedForStage(
event: SparkListenerExecutorExcludedForStage): Unit = {
updateExclusionStatusForStage(event.stageId, event.stageAttemptId, event.executorId)
}
override def onNodeBlacklistedForStage(event: SparkListenerNodeBlacklistedForStage): Unit = {
updateNodeExclusionStatusForStage(event.stageId, event.stageAttemptId, event.hostId)
}
override def onNodeExcludedForStage(event: SparkListenerNodeExcludedForStage): Unit = {
updateNodeExclusionStatusForStage(event.stageId, event.stageAttemptId, event.hostId)
}
private def addExcludedStageTo(exec: LiveExecutor, stageId: Int, now: Long): Unit = {
exec.excludedInStages += stageId
liveUpdate(exec, now)
}
private def setStageBlackListStatus(stage: LiveStage, now: Long, executorIds: String*): Unit = {
executorIds.foreach { executorId =>
val executorStageSummary = stage.executorSummary(executorId)
executorStageSummary.isExcluded = true
maybeUpdate(executorStageSummary, now)
}
stage.excludedExecutors ++= executorIds
maybeUpdate(stage, now)
}
private def setStageExcludedStatus(stage: LiveStage, now: Long, executorIds: String*): Unit = {
executorIds.foreach { executorId =>
val executorStageSummary = stage.executorSummary(executorId)
executorStageSummary.isExcluded = true
maybeUpdate(executorStageSummary, now)
}
stage.excludedExecutors ++= executorIds
maybeUpdate(stage, now)
}
override def onExecutorUnblacklisted(event: SparkListenerExecutorUnblacklisted): Unit = {
updateExecExclusionStatus(event.executorId, false)
}
override def onExecutorUnexcluded(event: SparkListenerExecutorUnexcluded): Unit = {
updateExecExclusionStatus(event.executorId, false)
}
override def onNodeBlacklisted(event: SparkListenerNodeBlacklisted): Unit = {
updateNodeExcluded(event.hostId, true)
}
override def onNodeExcluded(event: SparkListenerNodeExcluded): Unit = {
updateNodeExcluded(event.hostId, true)
}
override def onNodeUnblacklisted(event: SparkListenerNodeUnblacklisted): Unit = {
updateNodeExcluded(event.hostId, false)
}
override def onNodeUnexcluded(event: SparkListenerNodeUnexcluded): Unit = {
updateNodeExcluded(event.hostId, false)
}
private def updateNodeExclusionStatusForStage(stageId: Int, stageAttemptId: Int,
hostId: String): Unit = {
val now = System.nanoTime()
// Implicitly exclude every available executor for the stage associated with this node
Option(liveStages.get((stageId, stageAttemptId))).foreach { stage =>
val executorIds = liveExecutors.values.filter(exec => exec.host == hostId
&& exec.executorId != SparkContext.DRIVER_IDENTIFIER).map(_.executorId).toSeq
setStageExcludedStatus(stage, now, executorIds: _*)
}
liveExecutors.values.filter(exec => exec.hostname == hostId
&& exec.executorId != SparkContext.DRIVER_IDENTIFIER).foreach { exec =>
addExcludedStageTo(exec, stageId, now)
}
}
private def updateExclusionStatusForStage(stageId: Int, stageAttemptId: Int,
execId: String): Unit = {
val now = System.nanoTime()
Option(liveStages.get((stageId, stageAttemptId))).foreach { stage =>
setStageExcludedStatus(stage, now, execId)
}
liveExecutors.get(execId).foreach { exec =>
addExcludedStageTo(exec, stageId, now)
}
}
private def updateExecExclusionStatus(execId: String, excluded: Boolean): Unit = {
liveExecutors.get(execId).foreach { exec =>
updateExecExclusionStatus(exec, excluded, System.nanoTime())
}
}
private def updateExecExclusionStatus(exec: LiveExecutor, excluded: Boolean, now: Long): Unit = {
// Since we are sending both blacklisted and excluded events for backwards compatibility
// we need to protect against double counting so don't increment if already in
// that state. Also protects against executor being excluded and then node being
// separately excluded which could result in this being called twice for same
// executor.
if (exec.isExcluded != excluded) {
if (excluded) {
appStatusSource.foreach(_.BLACKLISTED_EXECUTORS.inc())
appStatusSource.foreach(_.EXCLUDED_EXECUTORS.inc())
} else {
appStatusSource.foreach(_.UNBLACKLISTED_EXECUTORS.inc())
appStatusSource.foreach(_.UNEXCLUDED_EXECUTORS.inc())
}
exec.isExcluded = excluded
liveUpdate(exec, now)
}
}
private def updateNodeExcluded(host: String, excluded: Boolean): Unit = {
val now = System.nanoTime()
// Implicitly (un)exclude every executor associated with the node.
liveExecutors.values.foreach { exec =>
if (exec.hostname == host && exec.executorId != SparkContext.DRIVER_IDENTIFIER) {
updateExecExclusionStatus(exec, excluded, now)
}
}
}
override def onJobStart(event: SparkListenerJobStart): Unit = {
val now = System.nanoTime()
// Compute (a potential over-estimate of) the number of tasks that will be run by this job.
// This may be an over-estimate because the job start event references all of the result
// stages' transitive stage dependencies, but some of these stages might be skipped if their
// output is available from earlier runs.
// See https://github.com/apache/spark/pull/3009 for a more extensive discussion.
val numTasks = {
val missingStages = event.stageInfos.filter(_.completionTime.isEmpty)
missingStages.map(_.numTasks).sum
}
val lastStageInfo = event.stageInfos.sortBy(_.stageId).lastOption
val jobName = lastStageInfo.map(_.name).getOrElse("")
val description = Option(event.properties)
.flatMap { p => Option(p.getProperty(SparkContext.SPARK_JOB_DESCRIPTION)) }
val jobGroup = Option(event.properties)
.flatMap { p => Option(p.getProperty(SparkContext.SPARK_JOB_GROUP_ID)) }
val sqlExecutionId = Option(event.properties)
.flatMap(p => Option(p.getProperty(SQL_EXECUTION_ID_KEY)).map(_.toLong))
val job = new LiveJob(
event.jobId,
jobName,
description,
if (event.time > 0) Some(new Date(event.time)) else None,
event.stageIds,
jobGroup,
numTasks,
sqlExecutionId)
liveJobs.put(event.jobId, job)
liveUpdate(job, now)
event.stageInfos.foreach { stageInfo =>
// A new job submission may re-use an existing stage, so this code needs to do an update
// instead of just a write.
val stage = getOrCreateStage(stageInfo)
stage.jobs :+= job
stage.jobIds += event.jobId
liveUpdate(stage, now)
}
// Create the graph data for all the job's stages.
event.stageInfos.foreach { stage =>
val graph = RDDOperationGraph.makeOperationGraph(stage, maxGraphRootNodes)
val uigraph = new RDDOperationGraphWrapper(
stage.stageId,
graph.edges,
graph.outgoingEdges,
graph.incomingEdges,
newRDDOperationCluster(graph.rootCluster))
kvstore.write(uigraph)
}
}
private def newRDDOperationCluster(cluster: RDDOperationCluster): RDDOperationClusterWrapper = {
new RDDOperationClusterWrapper(
cluster.id,
cluster.name,
cluster.childNodes,
cluster.childClusters.map(newRDDOperationCluster))
}
override def onJobEnd(event: SparkListenerJobEnd): Unit = {
liveJobs.remove(event.jobId).foreach { job =>
val now = System.nanoTime()
// Check if there are any pending stages that match this job; mark those as skipped.
val it = liveStages.entrySet.iterator()
while (it.hasNext()) {
val e = it.next()
if (job.stageIds.contains(e.getKey()._1)) {
val stage = e.getValue()
if (v1.StageStatus.PENDING.equals(stage.status)) {
stage.status = v1.StageStatus.SKIPPED
job.skippedStages += stage.info.stageId
job.skippedTasks += stage.info.numTasks
job.activeStages -= 1
pools.get(stage.schedulingPool).foreach { pool =>
pool.stageIds = pool.stageIds - stage.info.stageId
update(pool, now)
}
it.remove()
update(stage, now, last = true)
}
}
}
job.status = event.jobResult match {
case JobSucceeded =>
appStatusSource.foreach{_.SUCCEEDED_JOBS.inc()}
JobExecutionStatus.SUCCEEDED
case JobFailed(_) =>
appStatusSource.foreach{_.FAILED_JOBS.inc()}
JobExecutionStatus.FAILED
}
job.completionTime = if (event.time > 0) Some(new Date(event.time)) else None
for {
source <- appStatusSource
submissionTime <- job.submissionTime
completionTime <- job.completionTime
} {
source.JOB_DURATION.value.set(completionTime.getTime() - submissionTime.getTime())
}
// update global app status counters
appStatusSource.foreach { source =>
source.COMPLETED_STAGES.inc(job.completedStages.size)
source.FAILED_STAGES.inc(job.failedStages)
source.COMPLETED_TASKS.inc(job.completedTasks)
source.FAILED_TASKS.inc(job.failedTasks)
source.KILLED_TASKS.inc(job.killedTasks)
source.SKIPPED_TASKS.inc(job.skippedTasks)
source.SKIPPED_STAGES.inc(job.skippedStages.size)
}
update(job, now, last = true)
if (job.status == JobExecutionStatus.SUCCEEDED) {
appSummary = new AppSummary(appSummary.numCompletedJobs + 1, appSummary.numCompletedStages)
kvstore.write(appSummary)
}
}
}
override def onStageSubmitted(event: SparkListenerStageSubmitted): Unit = {
val now = System.nanoTime()
val stage = getOrCreateStage(event.stageInfo)
stage.status = v1.StageStatus.ACTIVE
stage.schedulingPool = Option(event.properties).flatMap { p =>
Option(p.getProperty(SparkContext.SPARK_SCHEDULER_POOL))
}.getOrElse(SparkUI.DEFAULT_POOL_NAME)
// Look at all active jobs to find the ones that mention this stage.
stage.jobs = liveJobs.values
.filter(_.stageIds.contains(event.stageInfo.stageId))
.toSeq
stage.jobIds = stage.jobs.map(_.jobId).toSet
stage.description = Option(event.properties).flatMap { p =>
Option(p.getProperty(SparkContext.SPARK_JOB_DESCRIPTION))
}
stage.jobs.foreach { job =>
job.completedStages = job.completedStages - event.stageInfo.stageId
job.activeStages += 1
liveUpdate(job, now)
}
val pool = pools.getOrElseUpdate(stage.schedulingPool, new SchedulerPool(stage.schedulingPool))
pool.stageIds = pool.stageIds + event.stageInfo.stageId
update(pool, now)
event.stageInfo.rddInfos.foreach { info =>
if (info.storageLevel.isValid) {
liveUpdate(liveRDDs.getOrElseUpdate(info.id, new LiveRDD(info, info.storageLevel)), now)
}
}
liveUpdate(stage, now)
}
override def onTaskStart(event: SparkListenerTaskStart): Unit = {
val now = System.nanoTime()
val task = new LiveTask(event.taskInfo, event.stageId, event.stageAttemptId, lastUpdateTime)
liveTasks.put(event.taskInfo.taskId, task)
liveUpdate(task, now)
Option(liveStages.get((event.stageId, event.stageAttemptId))).foreach { stage =>
if (event.taskInfo.speculative) {
stage.speculationStageSummary.numActiveTasks += 1
stage.speculationStageSummary.numTasks += 1
update(stage.speculationStageSummary, now)
}
stage.activeTasks += 1
stage.firstLaunchTime = math.min(stage.firstLaunchTime, event.taskInfo.launchTime)
val locality = event.taskInfo.taskLocality.toString()
val count = stage.localitySummary.getOrElse(locality, 0L) + 1L
stage.localitySummary = stage.localitySummary ++ Map(locality -> count)
stage.activeTasksPerExecutor(event.taskInfo.executorId) += 1
maybeUpdate(stage, now)
stage.jobs.foreach { job =>
job.activeTasks += 1
maybeUpdate(job, now)
}
if (stage.savedTasks.incrementAndGet() > maxTasksPerStage && !stage.cleaning) {
stage.cleaning = true
kvstore.doAsync {
cleanupTasks(stage)
}
}
}
liveExecutors.get(event.taskInfo.executorId).foreach { exec =>
exec.activeTasks += 1
exec.totalTasks += 1
maybeUpdate(exec, now)
}
}
override def onTaskGettingResult(event: SparkListenerTaskGettingResult): Unit = {
// Call update on the task so that the "getting result" time is written to the store; the
// value is part of the mutable TaskInfo state that the live entity already references.
liveTasks.get(event.taskInfo.taskId).foreach { task =>
maybeUpdate(task, System.nanoTime())
}
}
override def onTaskEnd(event: SparkListenerTaskEnd): Unit = {
// TODO: can this really happen?
if (event.taskInfo == null) {
return
}
val now = System.nanoTime()
val metricsDelta = liveTasks.remove(event.taskInfo.taskId).map { task =>
task.info = event.taskInfo
val errorMessage = event.reason match {
case Success =>
None
case k: TaskKilled =>
Some(k.reason)
case e: ExceptionFailure => // Handle ExceptionFailure because we might have accumUpdates
Some(e.toErrorString)
case e: TaskFailedReason => // All other failure cases
Some(e.toErrorString)
case other =>
logInfo(s"Unhandled task end reason: $other")
None
}
task.errorMessage = errorMessage
val delta = task.updateMetrics(event.taskMetrics)
update(task, now, last = true)
delta
}.orNull
val (completedDelta, failedDelta, killedDelta) = event.reason match {
case Success =>
(1, 0, 0)
case _: TaskKilled =>
(0, 0, 1)
case _: TaskCommitDenied =>
(0, 0, 1)
case _ =>
(0, 1, 0)
}
Option(liveStages.get((event.stageId, event.stageAttemptId))).foreach { stage =>
if (metricsDelta != null) {
stage.metrics = LiveEntityHelpers.addMetrics(stage.metrics, metricsDelta)
}
stage.activeTasks -= 1
stage.completedTasks += completedDelta
if (completedDelta > 0) {
stage.completedIndices.add(event.taskInfo.index)
}
stage.failedTasks += failedDelta
stage.killedTasks += killedDelta
if (killedDelta > 0) {
stage.killedSummary = killedTasksSummary(event.reason, stage.killedSummary)
}
stage.activeTasksPerExecutor(event.taskInfo.executorId) -= 1
stage.peakExecutorMetrics.compareAndUpdatePeakValues(event.taskExecutorMetrics)
stage.executorSummary(event.taskInfo.executorId).peakExecutorMetrics
.compareAndUpdatePeakValues(event.taskExecutorMetrics)
// [SPARK-24415] Wait for all tasks to finish before removing stage from live list
val removeStage =
stage.activeTasks == 0 &&
(v1.StageStatus.COMPLETE.equals(stage.status) ||
v1.StageStatus.FAILED.equals(stage.status))
if (removeStage) {
update(stage, now, last = true)
} else {
maybeUpdate(stage, now)
}
// Store both stage ID and task index in a single long variable for tracking at job level.
val taskIndex = (event.stageId.toLong << Integer.SIZE) | event.taskInfo.index
stage.jobs.foreach { job =>
job.activeTasks -= 1
job.completedTasks += completedDelta
if (completedDelta > 0) {
job.completedIndices.add(taskIndex)
}
job.failedTasks += failedDelta
job.killedTasks += killedDelta
if (killedDelta > 0) {
job.killedSummary = killedTasksSummary(event.reason, job.killedSummary)
}
if (removeStage) {
update(job, now)
} else {
maybeUpdate(job, now)
}
}
val esummary = stage.executorSummary(event.taskInfo.executorId)
esummary.taskTime += event.taskInfo.duration
esummary.succeededTasks += completedDelta
esummary.failedTasks += failedDelta
esummary.killedTasks += killedDelta
if (metricsDelta != null) {
esummary.metrics = LiveEntityHelpers.addMetrics(esummary.metrics, metricsDelta)
}
val isLastTask = stage.activeTasksPerExecutor(event.taskInfo.executorId) == 0
// If the last task of the executor finished, then update the esummary
// for both live and history events.
if (isLastTask) {
update(esummary, now)
} else {
maybeUpdate(esummary, now)
}
if (event.taskInfo.speculative) {
stage.speculationStageSummary.numActiveTasks -= 1
stage.speculationStageSummary.numCompletedTasks += completedDelta
stage.speculationStageSummary.numFailedTasks += failedDelta
stage.speculationStageSummary.numKilledTasks += killedDelta
update(stage.speculationStageSummary, now)
}
if (!stage.cleaning && stage.savedTasks.get() > maxTasksPerStage) {
stage.cleaning = true
kvstore.doAsync {
cleanupTasks(stage)
}
}
if (removeStage) {
liveStages.remove((event.stageId, event.stageAttemptId))
}
}
liveExecutors.get(event.taskInfo.executorId).foreach { exec =>
exec.activeTasks -= 1
exec.completedTasks += completedDelta
exec.failedTasks += failedDelta
exec.totalDuration += event.taskInfo.duration
exec.peakExecutorMetrics.compareAndUpdatePeakValues(event.taskExecutorMetrics)
// Note: For resubmitted tasks, we continue to use the metrics that belong to the
// first attempt of this task. This may not be 100% accurate because the first attempt
// could have failed half-way through. The correct fix would be to keep track of the
// metrics added by each attempt, but this is much more complicated.
if (event.reason != Resubmitted) {
if (event.taskMetrics != null) {
val readMetrics = event.taskMetrics.shuffleReadMetrics
exec.totalGcTime += event.taskMetrics.jvmGCTime
exec.totalInputBytes += event.taskMetrics.inputMetrics.bytesRead
exec.totalShuffleRead += readMetrics.localBytesRead + readMetrics.remoteBytesRead
exec.totalShuffleWrite += event.taskMetrics.shuffleWriteMetrics.bytesWritten
}
}
// Force an update on both live and history applications when the number of active tasks
// reaches 0. This is checked in some tests (e.g. SQLTestUtilsBase) so it needs to be
// reliably up to date.
if (exec.activeTasks == 0) {
update(exec, now)
} else {
maybeUpdate(exec, now)
}
}
}
override def onStageCompleted(event: SparkListenerStageCompleted): Unit = {
val maybeStage =
Option(liveStages.get((event.stageInfo.stageId, event.stageInfo.attemptNumber)))
maybeStage.foreach { stage =>
val now = System.nanoTime()
stage.info = event.stageInfo
// We have to update the stage status AFTER we create all the executorSummaries
// because stage deletion deletes whatever summaries it finds when the status is completed.
stage.executorSummaries.values.foreach(update(_, now))
// Because of SPARK-20205, old event logs may contain valid stages without a submission time
// in their start event. In those cases, we can only detect whether a stage was skipped by
// waiting until the completion event, at which point the field would have been set.
stage.status = event.stageInfo.failureReason match {
case Some(_) => v1.StageStatus.FAILED
case _ if event.stageInfo.submissionTime.isDefined => v1.StageStatus.COMPLETE
case _ => v1.StageStatus.SKIPPED
}
stage.jobs.foreach { job =>
stage.status match {
case v1.StageStatus.COMPLETE =>
job.completedStages += event.stageInfo.stageId
case v1.StageStatus.SKIPPED =>
job.skippedStages += event.stageInfo.stageId
job.skippedTasks += event.stageInfo.numTasks
case _ =>
job.failedStages += 1
}
job.activeStages -= 1
liveUpdate(job, now)
}
pools.get(stage.schedulingPool).foreach { pool =>
pool.stageIds = pool.stageIds - event.stageInfo.stageId
update(pool, now)
}
val executorIdsForStage = stage.excludedExecutors
executorIdsForStage.foreach { executorId =>
liveExecutors.get(executorId).foreach { exec =>
removeExcludedStageFrom(exec, event.stageInfo.stageId, now)
}
}
// Remove stage only if there are no active tasks remaining
val removeStage = stage.activeTasks == 0
update(stage, now, last = removeStage)
if (removeStage) {
liveStages.remove((event.stageInfo.stageId, event.stageInfo.attemptNumber))
}
if (stage.status == v1.StageStatus.COMPLETE) {
appSummary = new AppSummary(appSummary.numCompletedJobs, appSummary.numCompletedStages + 1)
kvstore.write(appSummary)
}
}
// remove any dead executors that were not running for any currently active stages
deadExecutors.retain((execId, exec) => isExecutorActiveForLiveStages(exec))
}
private def removeExcludedStageFrom(exec: LiveExecutor, stageId: Int, now: Long) = {
exec.excludedInStages -= stageId
liveUpdate(exec, now)
}
override def onBlockManagerAdded(event: SparkListenerBlockManagerAdded): Unit = {
// This needs to set fields that are already set by onExecutorAdded because the driver is
// considered an "executor" in the UI, but does not have a SparkListenerExecutorAdded event.
val exec = getOrCreateExecutor(event.blockManagerId.executorId, event.time)
exec.hostPort = event.blockManagerId.hostPort
event.maxOnHeapMem.foreach { _ =>
exec.totalOnHeap = event.maxOnHeapMem.get
exec.totalOffHeap = event.maxOffHeapMem.get
// SPARK-30594: whenever(first time or re-register) a BlockManager added, all blocks
// from this BlockManager will be reported to driver later. So, we should clean up
// used memory to avoid overlapped count.
exec.usedOnHeap = 0
exec.usedOffHeap = 0
}
exec.isActive = true
exec.maxMemory = event.maxMem
liveUpdate(exec, System.nanoTime())
}
override def onBlockManagerRemoved(event: SparkListenerBlockManagerRemoved): Unit = {
// Nothing to do here. Covered by onExecutorRemoved.
}
override def onUnpersistRDD(event: SparkListenerUnpersistRDD): Unit = {
liveRDDs.remove(event.rddId).foreach { liveRDD =>
val storageLevel = liveRDD.info.storageLevel
// Use RDD partition info to update executor block info.
liveRDD.getPartitions().foreach { case (_, part) =>
part.executors.foreach { executorId =>
liveExecutors.get(executorId).foreach { exec =>
exec.rddBlocks = exec.rddBlocks - 1
}
}
}
val now = System.nanoTime()
// Use RDD distribution to update executor memory and disk usage info.
liveRDD.getDistributions().foreach { case (executorId, rddDist) =>
liveExecutors.get(executorId).foreach { exec =>
if (exec.hasMemoryInfo) {
if (storageLevel.useOffHeap) {
exec.usedOffHeap = addDeltaToValue(exec.usedOffHeap, -rddDist.offHeapUsed)
} else {
exec.usedOnHeap = addDeltaToValue(exec.usedOnHeap, -rddDist.onHeapUsed)
}
}
exec.memoryUsed = addDeltaToValue(exec.memoryUsed, -rddDist.memoryUsed)
exec.diskUsed = addDeltaToValue(exec.diskUsed, -rddDist.diskUsed)
maybeUpdate(exec, now)
}
}
}
kvstore.delete(classOf[RDDStorageInfoWrapper], event.rddId)
}
override def onExecutorMetricsUpdate(event: SparkListenerExecutorMetricsUpdate): Unit = {
val now = System.nanoTime()
event.accumUpdates.foreach { case (taskId, sid, sAttempt, accumUpdates) =>
liveTasks.get(taskId).foreach { task =>
val metrics = TaskMetrics.fromAccumulatorInfos(accumUpdates)
val delta = task.updateMetrics(metrics)
maybeUpdate(task, now)
Option(liveStages.get((sid, sAttempt))).foreach { stage =>
stage.metrics = LiveEntityHelpers.addMetrics(stage.metrics, delta)
maybeUpdate(stage, now)
val esummary = stage.executorSummary(event.execId)
esummary.metrics = LiveEntityHelpers.addMetrics(esummary.metrics, delta)
maybeUpdate(esummary, now)
}
}
}
// check if there is a new peak value for any of the executor level memory metrics
// for the live UI. SparkListenerExecutorMetricsUpdate events are only processed
// for the live UI.
event.executorUpdates.foreach { case (key, peakUpdates) =>
liveExecutors.get(event.execId).foreach { exec =>
if (exec.peakExecutorMetrics.compareAndUpdatePeakValues(peakUpdates)) {
update(exec, now)
}
}
// Update stage level peak executor metrics.
updateStageLevelPeakExecutorMetrics(key._1, key._2, event.execId, peakUpdates, now)
}
// Flush updates if necessary. Executor heartbeat is an event that happens periodically. Flush
// here to ensure the staleness of Spark UI doesn't last more than
// `max(heartbeat interval, liveUpdateMinFlushPeriod)`.
if (now - lastFlushTimeNs > liveUpdateMinFlushPeriod) {
flush(maybeUpdate(_, now))
// Re-get the current system time because `flush` may be slow and `now` is stale.
lastFlushTimeNs = System.nanoTime()
}
}
override def onStageExecutorMetrics(event: SparkListenerStageExecutorMetrics): Unit = {
val now = System.nanoTime()
// check if there is a new peak value for any of the executor level memory metrics,
// while reading from the log. SparkListenerStageExecutorMetrics are only processed
// when reading logs.
liveExecutors.get(event.execId).orElse(
deadExecutors.get(event.execId)).foreach { exec =>
if (exec.peakExecutorMetrics.compareAndUpdatePeakValues(event.executorMetrics)) {
update(exec, now)
}
}
// Update stage level peak executor metrics.
updateStageLevelPeakExecutorMetrics(
event.stageId, event.stageAttemptId, event.execId, event.executorMetrics, now)
}
private def updateStageLevelPeakExecutorMetrics(
stageId: Int,
stageAttemptId: Int,
executorId: String,
executorMetrics: ExecutorMetrics,
now: Long): Unit = {
Option(liveStages.get((stageId, stageAttemptId))).foreach { stage =>
if (stage.peakExecutorMetrics.compareAndUpdatePeakValues(executorMetrics)) {
update(stage, now)
}
val esummary = stage.executorSummary(executorId)
if (esummary.peakExecutorMetrics.compareAndUpdatePeakValues(executorMetrics)) {
update(esummary, now)
}
}
}
override def onBlockUpdated(event: SparkListenerBlockUpdated): Unit = {
event.blockUpdatedInfo.blockId match {
case block: RDDBlockId => updateRDDBlock(event, block)
case stream: StreamBlockId => updateStreamBlock(event, stream)
case broadcast: BroadcastBlockId => updateBroadcastBlock(event, broadcast)
case _ =>
}
}
/** Go through all `LiveEntity`s and use `entityFlushFunc(entity)` to flush them. */
private def flush(entityFlushFunc: LiveEntity => Unit): Unit = {
liveStages.values.asScala.foreach { stage =>
entityFlushFunc(stage)
stage.executorSummaries.values.foreach(entityFlushFunc)
}
liveJobs.values.foreach(entityFlushFunc)
liveExecutors.values.foreach(entityFlushFunc)
liveTasks.values.foreach(entityFlushFunc)
liveRDDs.values.foreach(entityFlushFunc)
pools.values.foreach(entityFlushFunc)
}
/**
* Shortcut to get active stages quickly in a live application, for use by the console
* progress bar.
*/
def activeStages(): Seq[v1.StageData] = {
liveStages.values.asScala
.filter(s => Option(s.info).exists(_.submissionTime.isDefined))
.map(_.toApi())
.toList
.sortBy(_.stageId)
}
/**
* Apply a delta to a value, but ensure that it doesn't go negative.
*/
private def addDeltaToValue(old: Long, delta: Long): Long = math.max(0, old + delta)
private def updateRDDBlock(event: SparkListenerBlockUpdated, block: RDDBlockId): Unit = {
val now = System.nanoTime()
val executorId = event.blockUpdatedInfo.blockManagerId.executorId
// Whether values are being added to or removed from the existing accounting.
val storageLevel = event.blockUpdatedInfo.storageLevel
val diskDelta = event.blockUpdatedInfo.diskSize * (if (storageLevel.useDisk) 1 else -1)
val memoryDelta = event.blockUpdatedInfo.memSize * (if (storageLevel.useMemory) 1 else -1)
// We need information about the executor to update some memory accounting values in the
// RDD info, so read that beforehand.
val maybeExec = liveExecutors.get(executorId)
var rddBlocksDelta = 0
// Update the executor stats first, since they are used to calculate the free memory
// on tracked RDD distributions.
maybeExec.foreach { exec =>
updateExecutorMemoryDiskInfo(exec, storageLevel, memoryDelta, diskDelta)
}
// Update the block entry in the RDD info, keeping track of the deltas above so that we
// can update the executor information too.
liveRDDs.get(block.rddId).foreach { rdd =>
val partition = rdd.partition(block.name)
val executors = if (storageLevel.isValid) {
val current = partition.executors
if (current.contains(executorId)) {
current
} else {
rddBlocksDelta = 1
current :+ executorId
}
} else {
rddBlocksDelta = -1
partition.executors.filter(_ != executorId)
}
// Only update the partition if it's still stored in some executor, otherwise get rid of it.
if (executors.nonEmpty) {
partition.update(executors,
addDeltaToValue(partition.memoryUsed, memoryDelta),
addDeltaToValue(partition.diskUsed, diskDelta))
} else {
rdd.removePartition(block.name)
}
maybeExec.foreach { exec =>
if (exec.rddBlocks + rddBlocksDelta > 0) {
val dist = rdd.distribution(exec)
dist.memoryUsed = addDeltaToValue(dist.memoryUsed, memoryDelta)
dist.diskUsed = addDeltaToValue(dist.diskUsed, diskDelta)
if (exec.hasMemoryInfo) {
if (storageLevel.useOffHeap) {
dist.offHeapUsed = addDeltaToValue(dist.offHeapUsed, memoryDelta)
} else {
dist.onHeapUsed = addDeltaToValue(dist.onHeapUsed, memoryDelta)
}
}
dist.lastUpdate = null
} else {
rdd.removeDistribution(exec)
}
// Trigger an update on other RDDs so that the free memory information is updated.
liveRDDs.values.foreach { otherRdd =>
if (otherRdd.info.id != block.rddId) {
otherRdd.distributionOpt(exec).foreach { dist =>
dist.lastUpdate = null
update(otherRdd, now)
}
}
}
}
rdd.memoryUsed = addDeltaToValue(rdd.memoryUsed, memoryDelta)
rdd.diskUsed = addDeltaToValue(rdd.diskUsed, diskDelta)
update(rdd, now)
}
// Finish updating the executor now that we know the delta in the number of blocks.
maybeExec.foreach { exec =>
exec.rddBlocks += rddBlocksDelta
maybeUpdate(exec, now)
}
}
private def getOrCreateExecutor(executorId: String, addTime: Long): LiveExecutor = {
liveExecutors.getOrElseUpdate(executorId, {
activeExecutorCount += 1
new LiveExecutor(executorId, addTime)
})
}
private def getOrCreateOtherProcess(processId: String,
addTime: Long): LiveMiscellaneousProcess = {
liveMiscellaneousProcess.getOrElseUpdate(processId, {
new LiveMiscellaneousProcess(processId, addTime)
})
}
private def updateStreamBlock(event: SparkListenerBlockUpdated, stream: StreamBlockId): Unit = {
val storageLevel = event.blockUpdatedInfo.storageLevel
if (storageLevel.isValid) {
val data = new StreamBlockData(
stream.name,
event.blockUpdatedInfo.blockManagerId.executorId,
event.blockUpdatedInfo.blockManagerId.hostPort,
storageLevel.description,
storageLevel.useMemory,
storageLevel.useDisk,
storageLevel.deserialized,
event.blockUpdatedInfo.memSize,
event.blockUpdatedInfo.diskSize)
kvstore.write(data)
} else {
kvstore.delete(classOf[StreamBlockData],
Array(stream.name, event.blockUpdatedInfo.blockManagerId.executorId))
}
}
private def updateBroadcastBlock(
event: SparkListenerBlockUpdated,
broadcast: BroadcastBlockId): Unit = {
val executorId = event.blockUpdatedInfo.blockManagerId.executorId
liveExecutors.get(executorId).foreach { exec =>
val now = System.nanoTime()
val storageLevel = event.blockUpdatedInfo.storageLevel
// Whether values are being added to or removed from the existing accounting.
val diskDelta = event.blockUpdatedInfo.diskSize * (if (storageLevel.useDisk) 1 else -1)
val memoryDelta = event.blockUpdatedInfo.memSize * (if (storageLevel.useMemory) 1 else -1)
updateExecutorMemoryDiskInfo(exec, storageLevel, memoryDelta, diskDelta)
maybeUpdate(exec, now)
}
}
private[spark] def updateExecutorMemoryDiskInfo(
exec: LiveExecutor,
storageLevel: StorageLevel,
memoryDelta: Long,
diskDelta: Long): Unit = {
if (exec.hasMemoryInfo) {
if (storageLevel.useOffHeap) {
exec.usedOffHeap = addDeltaToValue(exec.usedOffHeap, memoryDelta)
} else {
exec.usedOnHeap = addDeltaToValue(exec.usedOnHeap, memoryDelta)
}
}
exec.memoryUsed = addDeltaToValue(exec.memoryUsed, memoryDelta)
exec.diskUsed = addDeltaToValue(exec.diskUsed, diskDelta)
}
private def getOrCreateStage(info: StageInfo): LiveStage = {
val stage = liveStages.computeIfAbsent((info.stageId, info.attemptNumber),
(_: (Int, Int)) => new LiveStage(info))
stage.info = info
stage
}
private def killedTasksSummary(
reason: TaskEndReason,
oldSummary: Map[String, Int]): Map[String, Int] = {
reason match {
case k: TaskKilled =>
oldSummary.updated(k.reason, oldSummary.getOrElse(k.reason, 0) + 1)
case denied: TaskCommitDenied =>
val reason = denied.toErrorString
oldSummary.updated(reason, oldSummary.getOrElse(reason, 0) + 1)
case _ =>
oldSummary
}
}
private def update(entity: LiveEntity, now: Long, last: Boolean = false): Unit = {
entity.write(kvstore, now, checkTriggers = last)
}
/** Update a live entity only if it hasn't been updated in the last configured period. */
private def maybeUpdate(entity: LiveEntity, now: Long): Unit = {
if (live && liveUpdatePeriodNs >= 0 && now - entity.lastWriteTime > liveUpdatePeriodNs) {
update(entity, now)
}
}
/** Update an entity only if in a live app; avoids redundant writes when replaying logs. */
private def liveUpdate(entity: LiveEntity, now: Long): Unit = {
if (live) {
update(entity, now)
}
}
private def cleanupExecutors(count: Long): Unit = {
// Because the limit is on the number of *dead* executors, we need to calculate whether
// there are actually enough dead executors to be deleted.
val threshold = conf.get(MAX_RETAINED_DEAD_EXECUTORS)
val dead = count - activeExecutorCount
if (dead > threshold) {
val countToDelete = calculateNumberToRemove(dead, threshold)
val toDelete = KVUtils.viewToSeq(kvstore.view(classOf[ExecutorSummaryWrapper]).index("active")
.max(countToDelete).first(false).last(false))
toDelete.foreach { e => kvstore.delete(e.getClass(), e.info.id) }
}
}
private def cleanupJobs(count: Long): Unit = {
val countToDelete = calculateNumberToRemove(count, conf.get(MAX_RETAINED_JOBS))
if (countToDelete <= 0L) {
return
}
val view = kvstore.view(classOf[JobDataWrapper]).index("completionTime").first(0L)
val toDelete = KVUtils.viewToSeq(view, countToDelete.toInt) { j =>
j.info.status != JobExecutionStatus.RUNNING && j.info.status != JobExecutionStatus.UNKNOWN
}
toDelete.foreach { j => kvstore.delete(j.getClass(), j.info.jobId) }
}
private case class StageCompletionTime(
stageId: Int,
attemptId: Int,
completionTime: Long)
private def cleanupStagesWithInMemoryStore(countToDelete: Long): Seq[Array[Int]] = {
val stageArray = new ArrayBuffer[StageCompletionTime]()
val stageDataCount = new mutable.HashMap[Int, Int]()
KVUtils.foreach(kvstore.view(classOf[StageDataWrapper])) { s =>
// Here we keep track of the total number of StageDataWrapper entries for each stage id.
// This will be used in cleaning up the RDDOperationGraphWrapper data.
if (stageDataCount.contains(s.info.stageId)) {
stageDataCount(s.info.stageId) += 1
} else {
stageDataCount(s.info.stageId) = 1
}
if (s.info.status != v1.StageStatus.ACTIVE && s.info.status != v1.StageStatus.PENDING) {
val candidate =
StageCompletionTime(s.info.stageId, s.info.attemptId, s.completionTime)
stageArray.append(candidate)
}
}
// As the completion time of a skipped stage is always -1, we will remove skipped stages first.
// This is safe since the job itself contains enough information to render skipped stages in the
// UI.
stageArray.sortBy(_.completionTime).take(countToDelete.toInt).map { s =>
val key = Array(s.stageId, s.attemptId)
kvstore.delete(classOf[StageDataWrapper], key)
stageDataCount(s.stageId) -= 1
// Check whether there are remaining attempts for the same stage. If there aren't, then
// also delete the RDD graph data.
if (stageDataCount(s.stageId) == 0) {
kvstore.delete(classOf[RDDOperationGraphWrapper], s.stageId)
}
cleanupCachedQuantiles(key)
key
}.toSeq
}
private def cleanupStagesInKVStore(countToDelete: Long): Seq[Array[Int]] = {
// As the completion time of a skipped stage is always -1, we will remove skipped stages first.
// This is safe since the job itself contains enough information to render skipped stages in the
// UI.
val view = kvstore.view(classOf[StageDataWrapper]).index("completionTime")
val stages = KVUtils.viewToSeq(view, countToDelete.toInt) { s =>
s.info.status != v1.StageStatus.ACTIVE && s.info.status != v1.StageStatus.PENDING
}
stages.map { s =>
val key = Array(s.info.stageId, s.info.attemptId)
kvstore.delete(s.getClass(), key)
// Check whether there are remaining attempts for the same stage. If there aren't, then
// also delete the RDD graph data.
val remainingAttempts = kvstore.view(classOf[StageDataWrapper])
.index("stageId")
.first(s.info.stageId)
.last(s.info.stageId)
.closeableIterator()
val hasMoreAttempts = try {
remainingAttempts.asScala.exists { other =>
other.info.attemptId != s.info.attemptId
}
} finally {
remainingAttempts.close()
}
if (!hasMoreAttempts) {
kvstore.delete(classOf[RDDOperationGraphWrapper], s.info.stageId)
}
cleanupCachedQuantiles(key)
key
}
}
private def cleanupStages(count: Long): Unit = {
val countToDelete = calculateNumberToRemove(count, conf.get(MAX_RETAINED_STAGES))
if (countToDelete <= 0L) {
return
}
// SPARK-36827: For better performance and avoiding OOM, here we use a optimized method for
// cleaning the StageDataWrapper and RDDOperationGraphWrapper data if Spark is
// using InMemoryStore.
val stageIds = if (kvstore.usingInMemoryStore) {
cleanupStagesWithInMemoryStore(countToDelete)
} else {
cleanupStagesInKVStore(countToDelete)
}
// Delete summaries in one pass, as deleting them for each stage is slow
kvstore.removeAllByIndexValues(classOf[ExecutorStageSummaryWrapper], "stage", stageIds)
// Delete tasks for all stages in one pass, as deleting them for each stage individually is slow
kvstore.removeAllByIndexValues(classOf[TaskDataWrapper], TaskIndexNames.STAGE, stageIds)
}
private def cleanupTasks(stage: LiveStage): Unit = {
val countToDelete = calculateNumberToRemove(stage.savedTasks.get(), maxTasksPerStage).toInt
if (countToDelete > 0) {
val stageKey = Array(stage.info.stageId, stage.info.attemptNumber)
val view = kvstore.view(classOf[TaskDataWrapper])
.index(TaskIndexNames.COMPLETION_TIME)
.parent(stageKey)
// Try to delete finished tasks only.
val toDelete = KVUtils.viewToSeq(view, countToDelete) { t =>
!live || t.status != TaskState.RUNNING.toString()
}
toDelete.foreach { t => kvstore.delete(t.getClass(), t.taskId) }
stage.savedTasks.addAndGet(-toDelete.size)
// If there are more running tasks than the configured limit, delete running tasks. This
// should be extremely rare since the limit should generally far exceed the number of tasks
// that can run in parallel.
val remaining = countToDelete - toDelete.size
if (remaining > 0) {
val runningTasksToDelete = view.max(remaining).iterator().asScala.toList
runningTasksToDelete.foreach { t => kvstore.delete(t.getClass(), t.taskId) }
stage.savedTasks.addAndGet(-remaining)
}
// On live applications, cleanup any cached quantiles for the stage. This makes sure that
// quantiles will be recalculated after tasks are replaced with newer ones.
//
// This is not needed in the SHS since caching only happens after the event logs are
// completely processed.
if (live) {
cleanupCachedQuantiles(stageKey)
}
}
stage.cleaning = false
}
private def cleanupCachedQuantiles(stageKey: Array[Int]): Unit = {
val cachedQuantiles = KVUtils.viewToSeq(kvstore.view(classOf[CachedQuantile])
.index("stage")
.first(stageKey)
.last(stageKey))
cachedQuantiles.foreach { q =>
kvstore.delete(q.getClass(), q.id)
}
}
/**
* Remove at least (retainedSize / 10) items to reduce friction. Because tracking may be done
* asynchronously, this method may return 0 in case enough items have been deleted already.
*/
private def calculateNumberToRemove(dataSize: Long, retainedSize: Long): Long = {
if (dataSize > retainedSize) {
math.max(retainedSize / 10L, dataSize - retainedSize)
} else {
0L
}
}
private def onMiscellaneousProcessAdded(
processInfoEvent: SparkListenerMiscellaneousProcessAdded): Unit = {
val processInfo = processInfoEvent.info
val miscellaneousProcess =
getOrCreateOtherProcess(processInfoEvent.processId, processInfoEvent.time)
miscellaneousProcess.processLogs = processInfo.logUrlInfo
miscellaneousProcess.hostPort = processInfo.hostPort
miscellaneousProcess.isActive = true
miscellaneousProcess.totalCores = processInfo.cores
update(miscellaneousProcess, System.nanoTime())
}
}
相关信息
相关文章
0
赞
- 所属分类: 前端技术
- 本文标签:
热门推荐
-
2、 - 优质文章
-
3、 gate.io
-
8、 golang
-
9、 openharmony
-
10、 Vue中input框自动聚焦