spark DataSourceV2Utils 源码

  • 2022-10-20
  • 浏览 (170)

spark DataSourceV2Utils 代码

文件路径:/sql/core/src/main/scala/org/apache/spark/sql/execution/datasources/v2/DataSourceV2Utils.scala

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.spark.sql.execution.datasources.v2

import java.util.regex.Pattern

import scala.collection.JavaConverters._

import com.fasterxml.jackson.databind.ObjectMapper

import org.apache.spark.internal.Logging
import org.apache.spark.sql.{DataFrame, Dataset, SparkSession}
import org.apache.spark.sql.catalyst.analysis.TimeTravelSpec
import org.apache.spark.sql.catalyst.expressions.Literal
import org.apache.spark.sql.catalyst.util.CaseInsensitiveMap
import org.apache.spark.sql.connector.catalog.{CatalogV2Util, SessionConfigSupport, SupportsCatalogOptions, SupportsRead, Table, TableProvider}
import org.apache.spark.sql.connector.catalog.TableCapability.BATCH_READ
import org.apache.spark.sql.errors.QueryExecutionErrors
import org.apache.spark.sql.internal.SQLConf
import org.apache.spark.sql.types.{LongType, StructType}
import org.apache.spark.sql.util.CaseInsensitiveStringMap

private[sql] object DataSourceV2Utils extends Logging {

  /**
   * Helper method that extracts and transforms session configs into k/v pairs, the k/v pairs will
   * be used to create data source options.
   * Only extract when `ds` implements [[SessionConfigSupport]], in this case we may fetch the
   * specified key-prefix from `ds`, and extract session configs with config keys that start with
   * `spark.datasource.$keyPrefix`. A session config `spark.datasource.$keyPrefix.xxx -> yyy` will
   * be transformed into `xxx -> yyy`.
   *
   * @param source a [[TableProvider]] object
   * @param conf the session conf
   * @return an immutable map that contains all the extracted and transformed k/v pairs.
   */
  def extractSessionConfigs(source: TableProvider, conf: SQLConf): Map[String, String] = {
    source match {
      case cs: SessionConfigSupport =>
        val keyPrefix = cs.keyPrefix()
        require(keyPrefix != null, "The data source config key prefix can't be null.")

        val pattern = Pattern.compile(s"^spark\\.datasource\\.$keyPrefix\\.(.+)")

        conf.getAllConfs.flatMap { case (key, value) =>
          val m = pattern.matcher(key)
          if (m.matches() && m.groupCount() > 0) {
            Seq((m.group(1), value))
          } else {
            Seq.empty
          }
        }

      case _ => Map.empty
    }
  }

  def getTableFromProvider(
      provider: TableProvider,
      options: CaseInsensitiveStringMap,
      userSpecifiedSchema: Option[StructType]): Table = {
    userSpecifiedSchema match {
      case Some(schema) =>
        if (provider.supportsExternalMetadata()) {
          provider.getTable(
            schema,
            provider.inferPartitioning(options),
            options.asCaseSensitiveMap())
        } else {
          throw QueryExecutionErrors.userSpecifiedSchemaUnsupportedByDataSourceError(provider)
        }

      case None =>
        provider.getTable(
          provider.inferSchema(options),
          provider.inferPartitioning(options),
          options.asCaseSensitiveMap())
    }
  }

  def loadV2Source(
      sparkSession: SparkSession,
      provider: TableProvider,
      userSpecifiedSchema: Option[StructType],
      extraOptions: CaseInsensitiveMap[String],
      source: String,
      paths: String*): Option[DataFrame] = {
    val catalogManager = sparkSession.sessionState.catalogManager
    val conf = sparkSession.sessionState.conf
    val sessionOptions = DataSourceV2Utils.extractSessionConfigs(provider, conf)

    val optionsWithPath = getOptionsWithPaths(extraOptions, paths: _*)

    val finalOptions = sessionOptions.filterKeys(!optionsWithPath.contains(_)).toMap ++
      optionsWithPath.originalMap
    val dsOptions = new CaseInsensitiveStringMap(finalOptions.asJava)
    val (table, catalog, ident) = provider match {
      case _: SupportsCatalogOptions if userSpecifiedSchema.nonEmpty =>
        throw new IllegalArgumentException(
          s"$source does not support user specified schema. Please don't specify the schema.")
      case hasCatalog: SupportsCatalogOptions =>
        val ident = hasCatalog.extractIdentifier(dsOptions)
        val catalog = CatalogV2Util.getTableProviderCatalog(
          hasCatalog,
          catalogManager,
          dsOptions)

        val version = hasCatalog.extractTimeTravelVersion(dsOptions)
        val timestamp = hasCatalog.extractTimeTravelTimestamp(dsOptions)

        val timeTravelVersion = if (version.isPresent) Some(version.get) else None
        val timeTravelTimestamp = if (timestamp.isPresent) {
          if (timestamp.get.forall(_.isDigit)) {
            Some(Literal(timestamp.get.toLong, LongType))
          } else {
            Some(Literal(timestamp.get))
          }
        } else {
          None
        }
        val timeTravel = TimeTravelSpec.create(timeTravelTimestamp, timeTravelVersion, conf)
        (CatalogV2Util.loadTable(catalog, ident, timeTravel).get, Some(catalog), Some(ident))
      case _ =>
        // TODO: Non-catalog paths for DSV2 are currently not well defined.
        val tbl = DataSourceV2Utils.getTableFromProvider(provider, dsOptions, userSpecifiedSchema)
        (tbl, None, None)
    }
    import org.apache.spark.sql.execution.datasources.v2.DataSourceV2Implicits._
    table match {
      case _: SupportsRead if table.supports(BATCH_READ) =>
        Option(Dataset.ofRows(
          sparkSession,
          DataSourceV2Relation.create(table, catalog, ident, dsOptions)))
      case _ => None
    }
  }

  private lazy val objectMapper = new ObjectMapper()
  private def getOptionsWithPaths(
      extraOptions: CaseInsensitiveMap[String],
      paths: String*): CaseInsensitiveMap[String] = {
    if (paths.isEmpty) {
      extraOptions
    } else if (paths.length == 1) {
      extraOptions + ("path" -> paths.head)
    } else {
      extraOptions + ("paths" -> objectMapper.writeValueAsString(paths.toArray))
    }
  }
}

相关信息

spark 源码目录

相关文章

spark AddPartitionExec 源码

spark AlterNamespaceSetPropertiesExec 源码

spark AlterTableExec 源码

spark BatchScanExec 源码

spark CacheTableExec 源码

spark ContinuousScanExec 源码

spark CreateIndexExec 源码

spark CreateNamespaceExec 源码

spark CreateTableExec 源码

spark DataSourceRDD 源码

0  赞