spark DataSourceRDD 源码
spark DataSourceRDD 代码
文件路径:/sql/core/src/main/scala/org/apache/spark/sql/execution/datasources/v2/DataSourceRDD.scala
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.spark.sql.execution.datasources.v2
import scala.language.existentials
import org.apache.spark._
import org.apache.spark.deploy.SparkHadoopUtil
import org.apache.spark.internal.Logging
import org.apache.spark.rdd.RDD
import org.apache.spark.sql.catalyst.InternalRow
import org.apache.spark.sql.connector.read.{InputPartition, PartitionReader, PartitionReaderFactory}
import org.apache.spark.sql.errors.QueryExecutionErrors
import org.apache.spark.sql.execution.metric.{CustomMetrics, SQLMetric}
import org.apache.spark.sql.vectorized.ColumnarBatch
class DataSourceRDDPartition(val index: Int, val inputPartitions: Seq[InputPartition])
extends Partition with Serializable
// TODO: we should have 2 RDDs: an RDD[InternalRow] for row-based scan, an `RDD[ColumnarBatch]` for
// columnar scan.
class DataSourceRDD(
sc: SparkContext,
@transient private val inputPartitions: Seq[Seq[InputPartition]],
partitionReaderFactory: PartitionReaderFactory,
columnarReads: Boolean,
customMetrics: Map[String, SQLMetric])
extends RDD[InternalRow](sc, Nil) {
override protected def getPartitions: Array[Partition] = {
inputPartitions.zipWithIndex.map {
case (inputPartitions, index) => new DataSourceRDDPartition(index, inputPartitions)
}.toArray
}
private def castPartition(split: Partition): DataSourceRDDPartition = split match {
case p: DataSourceRDDPartition => p
case _ => throw QueryExecutionErrors.notADatasourceRDDPartitionError(split)
}
override def compute(split: Partition, context: TaskContext): Iterator[InternalRow] = {
val iterator = new Iterator[Object] {
private val inputPartitions = castPartition(split).inputPartitions
private var currentIter: Option[Iterator[Object]] = None
private var currentIndex: Int = 0
override def hasNext: Boolean = currentIter.exists(_.hasNext) || advanceToNextIter()
override def next(): Object = {
if (!hasNext) throw new NoSuchElementException("No more elements")
currentIter.get.next()
}
private def advanceToNextIter(): Boolean = {
if (currentIndex >= inputPartitions.length) {
false
} else {
val inputPartition = inputPartitions(currentIndex)
currentIndex += 1
// TODO: SPARK-25083 remove the type erasure hack in data source scan
val (iter, reader) = if (columnarReads) {
val batchReader = partitionReaderFactory.createColumnarReader(inputPartition)
val iter = new MetricsBatchIterator(
new PartitionIterator[ColumnarBatch](batchReader, customMetrics))
(iter, batchReader)
} else {
val rowReader = partitionReaderFactory.createReader(inputPartition)
val iter = new MetricsRowIterator(
new PartitionIterator[InternalRow](rowReader, customMetrics))
(iter, rowReader)
}
context.addTaskCompletionListener[Unit] { _ =>
// In case of early stopping before consuming the entire iterator,
// we need to do one more metric update at the end of the task.
CustomMetrics.updateMetrics(reader.currentMetricsValues, customMetrics)
iter.forceUpdateMetrics()
reader.close()
}
currentIter = Some(iter)
hasNext
}
}
}
new InterruptibleIterator(context, iterator).asInstanceOf[Iterator[InternalRow]]
}
override def getPreferredLocations(split: Partition): Seq[String] = {
castPartition(split).inputPartitions.flatMap(_.preferredLocations())
}
}
private class PartitionIterator[T](
reader: PartitionReader[T],
customMetrics: Map[String, SQLMetric]) extends Iterator[T] {
private[this] var valuePrepared = false
private[this] var hasMoreInput = true
private var numRow = 0L
override def hasNext: Boolean = {
if (!valuePrepared && hasMoreInput) {
hasMoreInput = reader.next()
valuePrepared = hasMoreInput
}
valuePrepared
}
override def next(): T = {
if (!hasNext) {
throw QueryExecutionErrors.endOfStreamError()
}
if (numRow % CustomMetrics.NUM_ROWS_PER_UPDATE == 0) {
CustomMetrics.updateMetrics(reader.currentMetricsValues, customMetrics)
}
numRow += 1
valuePrepared = false
reader.get()
}
}
private class MetricsHandler extends Logging with Serializable {
private val inputMetrics = TaskContext.get().taskMetrics().inputMetrics
private val startingBytesRead = inputMetrics.bytesRead
private val getBytesRead = SparkHadoopUtil.get.getFSBytesReadOnThreadCallback()
def updateMetrics(numRows: Int, force: Boolean = false): Unit = {
inputMetrics.incRecordsRead(numRows)
val shouldUpdateBytesRead =
inputMetrics.recordsRead % SparkHadoopUtil.UPDATE_INPUT_METRICS_INTERVAL_RECORDS == 0
if (shouldUpdateBytesRead || force) {
inputMetrics.setBytesRead(startingBytesRead + getBytesRead())
}
}
}
private abstract class MetricsIterator[I](iter: Iterator[I]) extends Iterator[I] {
protected val metricsHandler = new MetricsHandler
override def hasNext: Boolean = {
if (iter.hasNext) {
true
} else {
forceUpdateMetrics()
false
}
}
def forceUpdateMetrics(): Unit = metricsHandler.updateMetrics(0, force = true)
}
private class MetricsRowIterator(
iter: Iterator[InternalRow]) extends MetricsIterator[InternalRow](iter) {
override def next(): InternalRow = {
val item = iter.next
metricsHandler.updateMetrics(1)
item
}
}
private class MetricsBatchIterator(
iter: Iterator[ColumnarBatch]) extends MetricsIterator[ColumnarBatch](iter) {
override def next(): ColumnarBatch = {
val batch: ColumnarBatch = iter.next
metricsHandler.updateMetrics(batch.numRows)
batch
}
}
相关信息
相关文章
0
赞
- 所属分类: 前端技术
- 本文标签:
热门推荐
-
2、 - 优质文章
-
3、 gate.io
-
8、 golang
-
9、 openharmony
-
10、 Vue中input框自动聚焦