spark DataSourceV2ScanExecBase 源码

  • 2022-10-20
  • 浏览 (190)

spark DataSourceV2ScanExecBase 代码

文件路径:/sql/core/src/main/scala/org/apache/spark/sql/execution/datasources/v2/DataSourceV2ScanExecBase.scala

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.spark.sql.execution.datasources.v2

import org.apache.spark.rdd.RDD
import org.apache.spark.sql.catalyst.InternalRow
import org.apache.spark.sql.catalyst.expressions.{Expression, RowOrdering, SortOrder}
import org.apache.spark.sql.catalyst.plans.physical
import org.apache.spark.sql.catalyst.plans.physical.{KeyGroupedPartitioning, SinglePartition}
import org.apache.spark.sql.catalyst.util.truncatedString
import org.apache.spark.sql.connector.read.{HasPartitionKey, InputPartition, PartitionReaderFactory, Scan}
import org.apache.spark.sql.execution.{ExplainUtils, LeafExecNode, SQLExecution}
import org.apache.spark.sql.execution.metric.SQLMetrics
import org.apache.spark.sql.internal.SQLConf
import org.apache.spark.sql.internal.connector.SupportsMetadata
import org.apache.spark.sql.vectorized.ColumnarBatch
import org.apache.spark.util.Utils

trait DataSourceV2ScanExecBase extends LeafExecNode {

  lazy val customMetrics = scan.supportedCustomMetrics().map { customMetric =>
    customMetric.name() -> SQLMetrics.createV2CustomMetric(sparkContext, customMetric)
  }.toMap

  override lazy val metrics = {
    Map("numOutputRows" -> SQLMetrics.createMetric(sparkContext, "number of output rows")) ++
      customMetrics
  }

  def scan: Scan

  def readerFactory: PartitionReaderFactory

  /** Optional partitioning expressions provided by the V2 data sources, through
   * `SupportsReportPartitioning` */
  def keyGroupedPartitioning: Option[Seq[Expression]]

  /** Optional ordering expressions provided by the V2 data sources, through
   * `SupportsReportOrdering` */
  def ordering: Option[Seq[SortOrder]]

  protected def inputPartitions: Seq[InputPartition]

  override def simpleString(maxFields: Int): String = {
    val result =
      s"$nodeName${truncatedString(output, "[", ", ", "]", maxFields)} ${scan.description()}"
    redact(result)
  }

  def partitions: Seq[Seq[InputPartition]] =
    groupedPartitions.map(_.map(_._2)).getOrElse(inputPartitions.map(Seq(_)))

  /**
   * Shorthand for calling redact() without specifying redacting rules
   */
  protected def redact(text: String): String = {
    Utils.redact(session.sessionState.conf.stringRedactionPattern, text)
  }

  override def verboseStringWithOperatorId(): String = {
    val metaDataStr = scan match {
      case s: SupportsMetadata =>
        s.getMetaData().toSeq.sorted.flatMap {
          case (_, value) if value.isEmpty || value.equals("[]") => None
          case (key, value) => Some(s"$key: ${redact(value)}")
          case _ => None
        }
      case _ =>
        Seq(scan.description())
    }
    s"""
       |$formattedNodeName
       |${ExplainUtils.generateFieldString("Output", output)}
       |${metaDataStr.mkString("\n")}
       |""".stripMargin
  }

  override def outputPartitioning: physical.Partitioning = {
    if (partitions.length == 1) {
      SinglePartition
    } else {
      keyGroupedPartitioning match {
        case Some(exprs) if KeyGroupedPartitioning.supportsExpressions(exprs) =>
          groupedPartitions.map { partitionValues =>
            KeyGroupedPartitioning(exprs, partitionValues.size, Some(partitionValues.map(_._1)))
          }.getOrElse(super.outputPartitioning)
        case _ =>
          super.outputPartitioning
      }
    }
  }

  @transient lazy val groupedPartitions: Option[Seq[(InternalRow, Seq[InputPartition])]] =
    groupPartitions(inputPartitions)

  /**
   * Group partition values for all the input partitions. This returns `Some` iff:
   *   - [[SQLConf.V2_BUCKETING_ENABLED]] is turned on
   *   - all input partitions implement [[HasPartitionKey]]
   *   - `keyGroupedPartitioning` is set
   *
   * The result, if defined, is a list of tuples where the first element is a partition value,
   * and the second element is a list of input partitions that share the same partition value.
   *
   * A non-empty result means each partition is clustered on a single key and therefore eligible
   * for further optimizations to eliminate shuffling in some operations such as join and aggregate.
   */
  def groupPartitions(
      inputPartitions: Seq[InputPartition]): Option[Seq[(InternalRow, Seq[InputPartition])]] = {
    if (!SQLConf.get.v2BucketingEnabled) return None
    keyGroupedPartitioning.flatMap { expressions =>
      val results = inputPartitions.takeWhile {
        case _: HasPartitionKey => true
        case _ => false
      }.map(p => (p.asInstanceOf[HasPartitionKey].partitionKey(), p))

      if (results.length != inputPartitions.length || inputPartitions.isEmpty) {
        // Not all of the `InputPartitions` implements `HasPartitionKey`, therefore skip here.
        None
      } else {
        val partKeyType = expressions.map(_.dataType)

        val groupedPartitions = results.groupBy(_._1).toSeq.map { case (key, s) =>
          (key, s.map(_._2))
        }

        // also sort the input partitions according to their partition key order. This ensures
        // a canonical order from both sides of a bucketed join, for example.
        val keyOrdering: Ordering[(InternalRow, Seq[InputPartition])] = {
          RowOrdering.createNaturalAscendingOrdering(partKeyType).on(_._1)
        }
        Some(groupedPartitions.sorted(keyOrdering))
      }
    }
  }

  override def outputOrdering: Seq[SortOrder] = {
    // when multiple partitions are grouped together, ordering inside partitions is not preserved
    val partitioningPreservesOrdering = groupedPartitions.forall(_.forall(_._2.length <= 1))
    ordering.filter(_ => partitioningPreservesOrdering).getOrElse(super.outputOrdering)
  }

  override def supportsColumnar: Boolean = {
    require(inputPartitions.forall(readerFactory.supportColumnarReads) ||
      !inputPartitions.exists(readerFactory.supportColumnarReads),
      "Cannot mix row-based and columnar input partitions.")

    inputPartitions.exists(readerFactory.supportColumnarReads)
  }

  def inputRDD: RDD[InternalRow]

  def inputRDDs(): Seq[RDD[InternalRow]] = Seq(inputRDD)

  override def doExecute(): RDD[InternalRow] = {
    val numOutputRows = longMetric("numOutputRows")
    inputRDD.map { r =>
      numOutputRows += 1
      r
    }
  }

  protected def postDriverMetrics(): Unit = {
    val driveSQLMetrics = scan.reportDriverMetrics().map(customTaskMetric => {
      val metric = metrics(customTaskMetric.name())
      metric.set(customTaskMetric.value())
      metric
    })

    val executionId = sparkContext.getLocalProperty(SQLExecution.EXECUTION_ID_KEY)
    SQLMetrics.postDriverMetricUpdates(sparkContext, executionId,
      driveSQLMetrics)
  }

  override def doExecuteColumnar(): RDD[ColumnarBatch] = {
    val numOutputRows = longMetric("numOutputRows")
    inputRDD.asInstanceOf[RDD[ColumnarBatch]].map { b =>
      numOutputRows += b.numRows()
      b
    }
  }
}

相关信息

spark 源码目录

相关文章

spark AddPartitionExec 源码

spark AlterNamespaceSetPropertiesExec 源码

spark AlterTableExec 源码

spark BatchScanExec 源码

spark CacheTableExec 源码

spark ContinuousScanExec 源码

spark CreateIndexExec 源码

spark CreateNamespaceExec 源码

spark CreateTableExec 源码

spark DataSourceRDD 源码

0  赞