spark Task 源码

  • 2022-10-20
  • 浏览 (297)

spark Task 代码

文件路径:/core/src/main/scala/org/apache/spark/scheduler/Task.scala

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.spark.scheduler

import java.nio.ByteBuffer
import java.util.Properties

import org.apache.spark._
import org.apache.spark.executor.TaskMetrics
import org.apache.spark.internal.config.APP_CALLER_CONTEXT
import org.apache.spark.internal.plugin.PluginContainer
import org.apache.spark.memory.{MemoryMode, TaskMemoryManager}
import org.apache.spark.metrics.MetricsSystem
import org.apache.spark.rdd.InputFileBlockHolder
import org.apache.spark.resource.ResourceInformation
import org.apache.spark.util._

/**
 * A unit of execution. We have two kinds of Task's in Spark:
 *
 *  - [[org.apache.spark.scheduler.ShuffleMapTask]]
 *  - [[org.apache.spark.scheduler.ResultTask]]
 *
 * A Spark job consists of one or more stages. The very last stage in a job consists of multiple
 * ResultTasks, while earlier stages consist of ShuffleMapTasks. A ResultTask executes the task
 * and sends the task output back to the driver application. A ShuffleMapTask executes the task
 * and divides the task output to multiple buckets (based on the task's partitioner).
 *
 * @param stageId id of the stage this task belongs to
 * @param stageAttemptId attempt id of the stage this task belongs to
 * @param partitionId index of the number in the RDD
 * @param numPartitions Total number of partitions in the stage that this task belongs to.
 * @param localProperties copy of thread-local properties set by the user on the driver side.
 * @param serializedTaskMetrics a `TaskMetrics` that is created and serialized on the driver side
 *                              and sent to executor side.
 *
 * The parameters below are optional:
 * @param jobId id of the job this task belongs to
 * @param appId id of the app this task belongs to
 * @param appAttemptId attempt id of the app this task belongs to
 * @param isBarrier whether this task belongs to a barrier stage. Spark must launch all the tasks
 *                  at the same time for a barrier stage.
 */
private[spark] abstract class Task[T](
    val stageId: Int,
    val stageAttemptId: Int,
    val partitionId: Int,
    val numPartitions: Int,
    @transient var localProperties: Properties = new Properties,
    // The default value is only used in tests.
    serializedTaskMetrics: Array[Byte] =
      SparkEnv.get.closureSerializer.newInstance().serialize(TaskMetrics.registered).array(),
    val jobId: Option[Int] = None,
    val appId: Option[String] = None,
    val appAttemptId: Option[String] = None,
    val isBarrier: Boolean = false) extends Serializable {

  @transient lazy val metrics: TaskMetrics =
    SparkEnv.get.closureSerializer.newInstance().deserialize(ByteBuffer.wrap(serializedTaskMetrics))

  /**
   * Called by [[org.apache.spark.executor.Executor]] to run this task.
   *
   * @param taskAttemptId an identifier for this task attempt that is unique within a SparkContext.
   * @param attemptNumber how many times this task has been attempted (0 for the first attempt)
   * @param resources other host resources (like gpus) that this task attempt can access
   * @return the result of the task along with updates of Accumulators.
   */
  final def run(
      taskAttemptId: Long,
      attemptNumber: Int,
      metricsSystem: MetricsSystem,
      cpus: Int,
      resources: Map[String, ResourceInformation],
      plugins: Option[PluginContainer]): T = {

    require(cpus > 0, "CPUs per task should be > 0")

    SparkEnv.get.blockManager.registerTask(taskAttemptId)
    // TODO SPARK-24874 Allow create BarrierTaskContext based on partitions, instead of whether
    // the stage is barrier.
    val taskContext = new TaskContextImpl(
      stageId,
      stageAttemptId, // stageAttemptId and stageAttemptNumber are semantically equal
      partitionId,
      taskAttemptId,
      attemptNumber,
      numPartitions,
      taskMemoryManager,
      localProperties,
      metricsSystem,
      metrics,
      cpus,
      resources)

    context = if (isBarrier) {
      new BarrierTaskContext(taskContext)
    } else {
      taskContext
    }

    InputFileBlockHolder.initialize()
    TaskContext.setTaskContext(context)
    taskThread = Thread.currentThread()

    if (_reasonIfKilled != null) {
      kill(interruptThread = false, _reasonIfKilled)
    }

    new CallerContext(
      "TASK",
      SparkEnv.get.conf.get(APP_CALLER_CONTEXT),
      appId,
      appAttemptId,
      jobId,
      Option(stageId),
      Option(stageAttemptId),
      Option(taskAttemptId),
      Option(attemptNumber)).setCurrentContext()

    plugins.foreach(_.onTaskStart())

    try {
      context.runTaskWithListeners(this)
    } finally {
      try {
        Utils.tryLogNonFatalError {
          // Release memory used by this thread for unrolling blocks
          SparkEnv.get.blockManager.memoryStore.releaseUnrollMemoryForThisTask(MemoryMode.ON_HEAP)
          SparkEnv.get.blockManager.memoryStore.releaseUnrollMemoryForThisTask(
            MemoryMode.OFF_HEAP)
          // Notify any tasks waiting for execution memory to be freed to wake up and try to
          // acquire memory again. This makes impossible the scenario where a task sleeps forever
          // because there are no other tasks left to notify it. Since this is safe to do but may
          // not be strictly necessary, we should revisit whether we can remove this in the
          // future.
          val memoryManager = SparkEnv.get.memoryManager
          memoryManager.synchronized { memoryManager.notifyAll() }
        }
      } finally {
        // Though we unset the ThreadLocal here, the context member variable itself is still
        // queried directly in the TaskRunner to check for FetchFailedExceptions.
        TaskContext.unset()
        InputFileBlockHolder.unset()
      }
    }
  }

  private var taskMemoryManager: TaskMemoryManager = _

  def setTaskMemoryManager(taskMemoryManager: TaskMemoryManager): Unit = {
    this.taskMemoryManager = taskMemoryManager
  }

  def runTask(context: TaskContext): T

  def preferredLocations: Seq[TaskLocation] = Nil

  // Map output tracker epoch. Will be set by TaskSetManager.
  var epoch: Long = -1

  // Task context, to be initialized in run().
  @transient var context: TaskContext = _

  // The actual Thread on which the task is running, if any. Initialized in run().
  @volatile @transient private var taskThread: Thread = _

  // If non-null, this task has been killed and the reason is as specified. This is used in case
  // context is not yet initialized when kill() is invoked.
  @volatile @transient private var _reasonIfKilled: String = null

  protected var _executorDeserializeTimeNs: Long = 0
  protected var _executorDeserializeCpuTime: Long = 0

  /**
   * If defined, this task has been killed and this option contains the reason.
   */
  def reasonIfKilled: Option[String] = Option(_reasonIfKilled)

  /**
   * Returns the amount of time spent deserializing the RDD and function to be run.
   */
  def executorDeserializeTimeNs: Long = _executorDeserializeTimeNs
  def executorDeserializeCpuTime: Long = _executorDeserializeCpuTime

  /**
   * Collect the latest values of accumulators used in this task. If the task failed,
   * filter out the accumulators whose values should not be included on failures.
   */
  def collectAccumulatorUpdates(taskFailed: Boolean = false): Seq[AccumulatorV2[_, _]] = {
    if (context != null) {
      // Note: internal accumulators representing task metrics always count failed values
      context.taskMetrics.nonZeroInternalAccums() ++
        // zero value external accumulators may still be useful, e.g. SQLMetrics, we should not
        // filter them out.
        context.taskMetrics.externalAccums.filter(a => !taskFailed || a.countFailedValues)
    } else {
      Seq.empty
    }
  }

  /**
   * Kills a task by setting the interrupted flag to true. This relies on the upper level Spark
   * code and user code to properly handle the flag. This function should be idempotent so it can
   * be called multiple times.
   * If interruptThread is true, we will also call Thread.interrupt() on the Task's executor thread.
   */
  def kill(interruptThread: Boolean, reason: String): Unit = {
    require(reason != null)
    _reasonIfKilled = reason
    if (context != null) {
      context.markInterrupted(reason)
    }
    if (interruptThread && taskThread != null) {
      taskThread.interrupt()
    }
  }
}

相关信息

spark 源码目录

相关文章

spark AccumulableInfo 源码

spark ActiveJob 源码

spark AsyncEventQueue 源码

spark BarrierJobAllocationFailed 源码

spark DAGScheduler 源码

spark DAGSchedulerEvent 源码

spark DAGSchedulerSource 源码

spark EventLoggingListener 源码

spark ExecutorDecommissionInfo 源码

spark ExecutorFailuresInTaskSet 源码

0  赞