spark EventLoggingListener 源码

  • 2022-10-20
  • 浏览 (341)

spark EventLoggingListener 代码

文件路径:/core/src/main/scala/org/apache/spark/scheduler/EventLoggingListener.scala

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.spark.scheduler

import java.net.URI
import java.util.Properties

import scala.collection.JavaConverters._
import scala.collection.mutable

import org.apache.hadoop.conf.Configuration

import org.apache.spark.{SPARK_VERSION, SparkConf, SparkContext}
import org.apache.spark.deploy.SparkHadoopUtil
import org.apache.spark.deploy.history.EventLogFileWriter
import org.apache.spark.executor.ExecutorMetrics
import org.apache.spark.internal.Logging
import org.apache.spark.internal.config._
import org.apache.spark.util.{JsonProtocol, Utils}

/**
 * A SparkListener that logs events to persistent storage.
 *
 * Event logging is specified by the following configurable parameters:
 *   spark.eventLog.enabled - Whether event logging is enabled.
 *   spark.eventLog.dir - Path to the directory in which events are logged.
 *   spark.eventLog.logBlockUpdates.enabled - Whether to log block updates
 *   spark.eventLog.logStageExecutorMetrics - Whether to log stage executor metrics
 *
 * Event log file writer maintains its own parameters: refer the doc of [[EventLogFileWriter]]
 * and its descendant for more details.
 */
private[spark] class EventLoggingListener(
    appId: String,
    appAttemptId : Option[String],
    logBaseDir: URI,
    sparkConf: SparkConf,
    hadoopConf: Configuration)
  extends SparkListener with Logging {

  import EventLoggingListener._

  def this(appId: String, appAttemptId : Option[String], logBaseDir: URI, sparkConf: SparkConf) =
    this(appId, appAttemptId, logBaseDir, sparkConf,
      SparkHadoopUtil.get.newConfiguration(sparkConf))

  // For testing.
  private[scheduler] val logWriter: EventLogFileWriter =
    EventLogFileWriter(appId, appAttemptId, logBaseDir, sparkConf, hadoopConf)

  // For testing. Keep track of all JSON serialized events that have been logged.
  private[scheduler] val loggedEvents = new mutable.ArrayBuffer[String]

  private val shouldLogBlockUpdates = sparkConf.get(EVENT_LOG_BLOCK_UPDATES)
  private val shouldLogStageExecutorMetrics = sparkConf.get(EVENT_LOG_STAGE_EXECUTOR_METRICS)
  private val testing = sparkConf.get(EVENT_LOG_TESTING)

  // map of (stageId, stageAttempt) to executor metric peaks per executor/driver for the stage
  private val liveStageExecutorMetrics =
    mutable.HashMap.empty[(Int, Int), mutable.HashMap[String, ExecutorMetrics]]

  /**
   * Creates the log file in the configured log directory.
   */
  def start(): Unit = {
    logWriter.start()
    initEventLog()
  }

  private def initEventLog(): Unit = {
    val metadata = SparkListenerLogStart(SPARK_VERSION)
    val eventJson = JsonProtocol.sparkEventToJsonString(metadata)
    logWriter.writeEvent(eventJson, flushLogger = true)
    if (testing && loggedEvents != null) {
      loggedEvents += eventJson
    }
  }

  /** Log the event as JSON. */
  private def logEvent(event: SparkListenerEvent, flushLogger: Boolean = false): Unit = {
    val eventJson = JsonProtocol.sparkEventToJsonString(event)
    logWriter.writeEvent(eventJson, flushLogger)
    if (testing) {
      loggedEvents += eventJson
    }
  }

  // Events that do not trigger a flush
  override def onStageSubmitted(event: SparkListenerStageSubmitted): Unit = {
    logEvent(event.copy(properties = redactProperties(event.properties)))
    if (shouldLogStageExecutorMetrics) {
      // record the peak metrics for the new stage
      liveStageExecutorMetrics.put((event.stageInfo.stageId, event.stageInfo.attemptNumber()),
        mutable.HashMap.empty[String, ExecutorMetrics])
    }
  }

  override def onTaskStart(event: SparkListenerTaskStart): Unit = logEvent(event)

  override def onTaskGettingResult(event: SparkListenerTaskGettingResult): Unit = logEvent(event)

  override def onTaskEnd(event: SparkListenerTaskEnd): Unit = {
    logEvent(event)
    if (shouldLogStageExecutorMetrics) {
      val stageKey = (event.stageId, event.stageAttemptId)
      liveStageExecutorMetrics.get(stageKey).map { metricsPerExecutor =>
        val metrics = metricsPerExecutor.getOrElseUpdate(
          event.taskInfo.executorId, new ExecutorMetrics())
        metrics.compareAndUpdatePeakValues(event.taskExecutorMetrics)
      }
    }
  }

  override def onEnvironmentUpdate(event: SparkListenerEnvironmentUpdate): Unit = {
    logEvent(redactEvent(sparkConf, event))
  }

  // Events that trigger a flush
  override def onStageCompleted(event: SparkListenerStageCompleted): Unit = {
    if (shouldLogStageExecutorMetrics) {
      // clear out any previous attempts, that did not have a stage completed event
      val prevAttemptId = event.stageInfo.attemptNumber() - 1
      for (attemptId <- 0 to prevAttemptId) {
        liveStageExecutorMetrics.remove((event.stageInfo.stageId, attemptId))
      }

      // log the peak executor metrics for the stage, for each live executor,
      // whether or not the executor is running tasks for the stage
      val executorOpt = liveStageExecutorMetrics.remove(
        (event.stageInfo.stageId, event.stageInfo.attemptNumber()))
      executorOpt.foreach { execMap =>
        execMap.foreach { case (executorId, peakExecutorMetrics) =>
            logEvent(new SparkListenerStageExecutorMetrics(executorId, event.stageInfo.stageId,
              event.stageInfo.attemptNumber(), peakExecutorMetrics))
        }
      }
    }

    // log stage completed event
    logEvent(event, flushLogger = true)
  }

  override def onJobStart(event: SparkListenerJobStart): Unit = {
    logEvent(event.copy(properties = redactProperties(event.properties)), flushLogger = true)
  }

  override def onJobEnd(event: SparkListenerJobEnd): Unit = logEvent(event, flushLogger = true)

  override def onBlockManagerAdded(event: SparkListenerBlockManagerAdded): Unit = {
    logEvent(event, flushLogger = true)
  }

  override def onBlockManagerRemoved(event: SparkListenerBlockManagerRemoved): Unit = {
    logEvent(event, flushLogger = true)
  }

  override def onUnpersistRDD(event: SparkListenerUnpersistRDD): Unit = {
    logEvent(event, flushLogger = true)
  }

  override def onApplicationStart(event: SparkListenerApplicationStart): Unit = {
    logEvent(event, flushLogger = true)
  }

  override def onApplicationEnd(event: SparkListenerApplicationEnd): Unit = {
    logEvent(event, flushLogger = true)
  }
  override def onExecutorAdded(event: SparkListenerExecutorAdded): Unit = {
    logEvent(event, flushLogger = true)
  }

  override def onExecutorRemoved(event: SparkListenerExecutorRemoved): Unit = {
    logEvent(event, flushLogger = true)
  }

  override def onExecutorBlacklisted(event: SparkListenerExecutorBlacklisted): Unit = {
    logEvent(event, flushLogger = true)
  }

  override def onExecutorExcluded(event: SparkListenerExecutorExcluded): Unit = {
    logEvent(event, flushLogger = true)
  }

  override def onExecutorBlacklistedForStage(
      event: SparkListenerExecutorBlacklistedForStage): Unit = {
    logEvent(event, flushLogger = true)
  }

  override def onExecutorExcludedForStage(
      event: SparkListenerExecutorExcludedForStage): Unit = {
    logEvent(event, flushLogger = true)
  }

  override def onNodeBlacklistedForStage(event: SparkListenerNodeBlacklistedForStage): Unit = {
    logEvent(event, flushLogger = true)
  }

  override def onNodeExcludedForStage(event: SparkListenerNodeExcludedForStage): Unit = {
    logEvent(event, flushLogger = true)
  }

  override def onExecutorUnblacklisted(event: SparkListenerExecutorUnblacklisted): Unit = {
    logEvent(event, flushLogger = true)
  }

  override def onExecutorUnexcluded(event: SparkListenerExecutorUnexcluded): Unit = {
    logEvent(event, flushLogger = true)
  }


  override def onNodeBlacklisted(event: SparkListenerNodeBlacklisted): Unit = {
    logEvent(event, flushLogger = true)
  }

  override def onNodeExcluded(event: SparkListenerNodeExcluded): Unit = {
    logEvent(event, flushLogger = true)
  }

  override def onNodeUnblacklisted(event: SparkListenerNodeUnblacklisted): Unit = {
    logEvent(event, flushLogger = true)
  }

  override def onNodeUnexcluded(event: SparkListenerNodeUnexcluded): Unit = {
    logEvent(event, flushLogger = true)
  }

  override def onBlockUpdated(event: SparkListenerBlockUpdated): Unit = {
    if (shouldLogBlockUpdates) {
      logEvent(event, flushLogger = true)
    }
  }

  override def onExecutorMetricsUpdate(event: SparkListenerExecutorMetricsUpdate): Unit = {
    if (shouldLogStageExecutorMetrics) {
      if (event.execId == SparkContext.DRIVER_IDENTIFIER) {
        logEvent(event)
      }
      event.executorUpdates.foreach { case (stageKey1, newPeaks) =>
        liveStageExecutorMetrics.foreach { case (stageKey2, metricsPerExecutor) =>
          // If the update came from the driver, stageKey1 will be the dummy key (-1, -1),
          // so record those peaks for all active stages.
          // Otherwise, record the peaks for the matching stage.
          if (stageKey1 == DRIVER_STAGE_KEY || stageKey1 == stageKey2) {
            val metrics = metricsPerExecutor.getOrElseUpdate(
              event.execId, new ExecutorMetrics())
            metrics.compareAndUpdatePeakValues(newPeaks)
          }
        }
      }
    }
  }

  override def onResourceProfileAdded(event: SparkListenerResourceProfileAdded): Unit = {
    logEvent(event, flushLogger = true)
  }

  override def onOtherEvent(event: SparkListenerEvent): Unit = {
    if (event.logEvent) {
      logEvent(event, flushLogger = true)
    }
  }

  /** Stop logging events. */
  def stop(): Unit = {
    logWriter.stop()
  }

  private def redactProperties(properties: Properties): Properties = {
    if (properties == null) {
      return properties
    }
    val redactedProperties = new Properties
    // properties may contain some custom local properties such as stage/job description
    // only properties in sparkConf need to be redacted.
    val (globalProperties, localProperties) = properties.asScala.toSeq.partition {
      case (key, _) => sparkConf.contains(key)
    }
    (Utils.redact(sparkConf, globalProperties) ++ localProperties).foreach {
      case (key, value) => redactedProperties.setProperty(key, value)
    }
    redactedProperties
  }
}

private[spark] object EventLoggingListener extends Logging {
  val DEFAULT_LOG_DIR = "/tmp/spark-events"
  // Dummy stage key used by driver in executor metrics updates
  val DRIVER_STAGE_KEY = (-1, -1)

  private[spark] def redactEvent(
      sparkConf: SparkConf,
      event: SparkListenerEnvironmentUpdate): SparkListenerEnvironmentUpdate = {
    // environmentDetails maps a string descriptor to a set of properties
    // Similar to:
    // "JVM Information" -> jvmInformation,
    // "Spark Properties" -> sparkProperties,
    // ...
    // where jvmInformation, sparkProperties, etc. are sequence of tuples.
    // We go through the various  of properties and redact sensitive information from them.
    val noRedactProps = Seq("Classpath Entries")
    val redactedProps = event.environmentDetails.map {
      case (name, props) if noRedactProps.contains(name) => name -> props
      case (name, props) => name -> Utils.redact(sparkConf, props)
    }
    SparkListenerEnvironmentUpdate(redactedProps)
  }
}

相关信息

spark 源码目录

相关文章

spark AccumulableInfo 源码

spark ActiveJob 源码

spark AsyncEventQueue 源码

spark BarrierJobAllocationFailed 源码

spark DAGScheduler 源码

spark DAGSchedulerEvent 源码

spark DAGSchedulerSource 源码

spark ExecutorDecommissionInfo 源码

spark ExecutorFailuresInTaskSet 源码

spark ExecutorLossReason 源码

0  赞