spark JavaStreamingContext 源码

  • 2022-10-20
  • 浏览 (303)

spark JavaStreamingContext 代码

文件路径:/streaming/src/main/scala/org/apache/spark/streaming/api/java/JavaStreamingContext.scala

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.spark.streaming.api.java

import java.io.{Closeable, InputStream}
import java.lang.{Boolean => JBoolean}
import java.util.{List => JList, Map => JMap}

import scala.annotation.varargs
import scala.collection.JavaConverters._
import scala.reflect.ClassTag

import org.apache.hadoop.conf.Configuration
import org.apache.hadoop.fs.Path
import org.apache.hadoop.mapreduce.{InputFormat => NewInputFormat}

import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.api.java.{JavaPairRDD, JavaRDD, JavaSparkContext}
import org.apache.spark.api.java.function.{Function => JFunction, Function2 => JFunction2}
import org.apache.spark.api.java.function.{Function0 => JFunction0}
import org.apache.spark.deploy.SparkHadoopUtil
import org.apache.spark.rdd.RDD
import org.apache.spark.storage.StorageLevel
import org.apache.spark.streaming._
import org.apache.spark.streaming.receiver.Receiver
import org.apache.spark.streaming.scheduler.StreamingListener

/**
 * A Java-friendly version of [[org.apache.spark.streaming.StreamingContext]] which is the main
 * entry point for Spark Streaming functionality. It provides methods to create
 * [[org.apache.spark.streaming.api.java.JavaDStream]] and
 * [[org.apache.spark.streaming.api.java.JavaPairDStream]] from input sources. The internal
 * org.apache.spark.api.java.JavaSparkContext (see core Spark documentation) can be accessed
 * using `context.sparkContext`. After creating and transforming DStreams, the streaming
 * computation can be started and stopped using `context.start()` and `context.stop()`,
 * respectively. `context.awaitTermination()` allows the current thread to wait for the
 * termination of a context by `stop()` or by an exception.
 */
class JavaStreamingContext(val ssc: StreamingContext) extends Closeable {

  /**
   * Create a StreamingContext.
   * @param master Name of the Spark Master
   * @param appName Name to be used when registering with the scheduler
   * @param batchDuration The time interval at which streaming data will be divided into batches
   */
  def this(master: String, appName: String, batchDuration: Duration) =
    this(new StreamingContext(master, appName, batchDuration, null, Nil, Map()))

  /**
   * Create a StreamingContext.
   * @param master Name of the Spark Master
   * @param appName Name to be used when registering with the scheduler
   * @param batchDuration The time interval at which streaming data will be divided into batches
   * @param sparkHome The SPARK_HOME directory on the worker nodes
   * @param jarFile JAR file containing job code, to ship to cluster. This can be a path on the
   *                local file system or an HDFS, HTTP, HTTPS, or FTP URL.
   */
  def this(
      master: String,
      appName: String,
      batchDuration: Duration,
      sparkHome: String,
      jarFile: String) =
    this(new StreamingContext(master, appName, batchDuration, sparkHome, Seq(jarFile), Map()))

  /**
   * Create a StreamingContext.
   * @param master Name of the Spark Master
   * @param appName Name to be used when registering with the scheduler
   * @param batchDuration The time interval at which streaming data will be divided into batches
   * @param sparkHome The SPARK_HOME directory on the worker nodes
   * @param jars Collection of JARs to send to the cluster. These can be paths on the local file
   *             system or HDFS, HTTP, HTTPS, or FTP URLs.
   */
  def this(
      master: String,
      appName: String,
      batchDuration: Duration,
      sparkHome: String,
      jars: Array[String]) =
    this(new StreamingContext(master, appName, batchDuration, sparkHome, jars, Map()))

  /**
   * Create a StreamingContext.
   * @param master Name of the Spark Master
   * @param appName Name to be used when registering with the scheduler
   * @param batchDuration The time interval at which streaming data will be divided into batches
   * @param sparkHome The SPARK_HOME directory on the worker nodes
   * @param jars Collection of JARs to send to the cluster. These can be paths on the local file
   *             system or HDFS, HTTP, HTTPS, or FTP URLs.
   * @param environment Environment variables to set on worker nodes
   */
  def this(
    master: String,
    appName: String,
    batchDuration: Duration,
    sparkHome: String,
    jars: Array[String],
    environment: JMap[String, String]) =
    this(new StreamingContext(
      master,
      appName,
      batchDuration,
      sparkHome,
      jars,
      environment.asScala))

  /**
   * Create a JavaStreamingContext using an existing JavaSparkContext.
   * @param sparkContext The underlying JavaSparkContext to use
   * @param batchDuration The time interval at which streaming data will be divided into batches
   */
  def this(sparkContext: JavaSparkContext, batchDuration: Duration) =
    this(new StreamingContext(sparkContext.sc, batchDuration))

  /**
   * Create a JavaStreamingContext using a SparkConf configuration.
   * @param conf A Spark application configuration
   * @param batchDuration The time interval at which streaming data will be divided into batches
   */
  def this(conf: SparkConf, batchDuration: Duration) =
    this(new StreamingContext(conf, batchDuration))

  /**
   * Recreate a JavaStreamingContext from a checkpoint file.
   * @param path Path to the directory that was specified as the checkpoint directory
   */
  def this(path: String) = this(new StreamingContext(path, SparkHadoopUtil.get.conf))

  /**
   * Re-creates a JavaStreamingContext from a checkpoint file.
   * @param path Path to the directory that was specified as the checkpoint directory
   *
   */
  def this(path: String, hadoopConf: Configuration) = this(new StreamingContext(path, hadoopConf))

  /** The underlying SparkContext */
  val sparkContext = new JavaSparkContext(ssc.sc)

  /**
   * Create an input stream from network source hostname:port. Data is received using
   * a TCP socket and the receive bytes is interpreted as UTF8 encoded \n delimited
   * lines.
   * @param hostname      Hostname to connect to for receiving data
   * @param port          Port to connect to for receiving data
   * @param storageLevel  Storage level to use for storing the received objects
   */
  def socketTextStream(
      hostname: String, port: Int,
      storageLevel: StorageLevel
    ): JavaReceiverInputDStream[String] = {
    ssc.socketTextStream(hostname, port, storageLevel)
  }

  /**
   * Create an input stream from network source hostname:port. Data is received using
   * a TCP socket and the receive bytes is interpreted as UTF8 encoded \n delimited
   * lines. Storage level of the data will be the default StorageLevel.MEMORY_AND_DISK_SER_2.
   * @param hostname      Hostname to connect to for receiving data
   * @param port          Port to connect to for receiving data
   */
  def socketTextStream(hostname: String, port: Int): JavaReceiverInputDStream[String] = {
    ssc.socketTextStream(hostname, port)
  }

  /**
   * Create an input stream from network source hostname:port. Data is received using
   * a TCP socket and the receive bytes it interpreted as object using the given
   * converter.
   * @param hostname      Hostname to connect to for receiving data
   * @param port          Port to connect to for receiving data
   * @param converter     Function to convert the byte stream to objects
   * @param storageLevel  Storage level to use for storing the received objects
   * @tparam T            Type of the objects received (after converting bytes to objects)
   */
  def socketStream[T](
      hostname: String,
      port: Int,
      converter: JFunction[InputStream, java.lang.Iterable[T]],
      storageLevel: StorageLevel)
  : JavaReceiverInputDStream[T] = {
    def fn: (InputStream) => Iterator[T] = (x: InputStream) => converter.call(x).iterator().asScala
    implicit val cmt: ClassTag[T] =
      implicitly[ClassTag[AnyRef]].asInstanceOf[ClassTag[T]]
    ssc.socketStream(hostname, port, fn, storageLevel)
  }

  /**
   * Create an input stream that monitors a Hadoop-compatible filesystem
   * for new files and reads them as text files (using key as LongWritable, value
   * as Text and input format as TextInputFormat). Files must be written to the
   * monitored directory by "moving" them from another location within the same
   * file system. File names starting with . are ignored.
   * The text files must be encoded as UTF-8.
   *
   * @param directory HDFS directory to monitor for new file
   */
  def textFileStream(directory: String): JavaDStream[String] = {
    ssc.textFileStream(directory)
  }

  /**
   * Create an input stream that monitors a Hadoop-compatible filesystem
   * for new files and reads them as flat binary files with fixed record lengths,
   * yielding byte arrays
   *
   * @param directory HDFS directory to monitor for new files
   * @param recordLength The length at which to split the records
   *
   * @note We ensure that the byte array for each record in the
   * resulting RDDs of the DStream has the provided record length.
   */
  def binaryRecordsStream(directory: String, recordLength: Int): JavaDStream[Array[Byte]] = {
    ssc.binaryRecordsStream(directory, recordLength)
  }

  /**
   * Create an input stream from network source hostname:port, where data is received
   * as serialized blocks (serialized using the Spark's serializer) that can be directly
   * pushed into the block manager without deserializing them. This is the most efficient
   * way to receive data.
   * @param hostname      Hostname to connect to for receiving data
   * @param port          Port to connect to for receiving data
   * @param storageLevel  Storage level to use for storing the received objects
   * @tparam T            Type of the objects in the received blocks
   */
  def rawSocketStream[T](
      hostname: String,
      port: Int,
      storageLevel: StorageLevel): JavaReceiverInputDStream[T] = {
    implicit val cmt: ClassTag[T] =
      implicitly[ClassTag[AnyRef]].asInstanceOf[ClassTag[T]]
    JavaReceiverInputDStream.fromReceiverInputDStream(
      ssc.rawSocketStream(hostname, port, storageLevel))
  }

  /**
   * Create an input stream from network source hostname:port, where data is received
   * as serialized blocks (serialized using the Spark's serializer) that can be directly
   * pushed into the block manager without deserializing them. This is the most efficient
   * way to receive data.
   * @param hostname      Hostname to connect to for receiving data
   * @param port          Port to connect to for receiving data
   * @tparam T            Type of the objects in the received blocks
   */
  def rawSocketStream[T](hostname: String, port: Int): JavaReceiverInputDStream[T] = {
    implicit val cmt: ClassTag[T] =
      implicitly[ClassTag[AnyRef]].asInstanceOf[ClassTag[T]]
    JavaReceiverInputDStream.fromReceiverInputDStream(
      ssc.rawSocketStream(hostname, port))
  }

  /**
   * Create an input stream that monitors a Hadoop-compatible filesystem
   * for new files and reads them using the given key-value types and input format.
   * Files must be written to the monitored directory by "moving" them from another
   * location within the same file system. File names starting with . are ignored.
   * @param directory HDFS directory to monitor for new file
   * @param kClass class of key for reading HDFS file
   * @param vClass class of value for reading HDFS file
   * @param fClass class of input format for reading HDFS file
   * @tparam K Key type for reading HDFS file
   * @tparam V Value type for reading HDFS file
   * @tparam F Input format for reading HDFS file
   */
  def fileStream[K, V, F <: NewInputFormat[K, V]](
      directory: String,
      kClass: Class[K],
      vClass: Class[V],
      fClass: Class[F]): JavaPairInputDStream[K, V] = {
    implicit val cmk: ClassTag[K] = ClassTag(kClass)
    implicit val cmv: ClassTag[V] = ClassTag(vClass)
    implicit val cmf: ClassTag[F] = ClassTag(fClass)
    ssc.fileStream[K, V, F](directory)
  }

  /**
   * Create an input stream that monitors a Hadoop-compatible filesystem
   * for new files and reads them using the given key-value types and input format.
   * Files must be written to the monitored directory by "moving" them from another
   * location within the same file system. File names starting with . are ignored.
   * @param directory HDFS directory to monitor for new file
   * @param kClass class of key for reading HDFS file
   * @param vClass class of value for reading HDFS file
   * @param fClass class of input format for reading HDFS file
   * @param filter Function to filter paths to process
   * @param newFilesOnly Should process only new files and ignore existing files in the directory
   * @tparam K Key type for reading HDFS file
   * @tparam V Value type for reading HDFS file
   * @tparam F Input format for reading HDFS file
   */
  def fileStream[K, V, F <: NewInputFormat[K, V]](
      directory: String,
      kClass: Class[K],
      vClass: Class[V],
      fClass: Class[F],
      filter: JFunction[Path, JBoolean],
      newFilesOnly: Boolean): JavaPairInputDStream[K, V] = {
    implicit val cmk: ClassTag[K] = ClassTag(kClass)
    implicit val cmv: ClassTag[V] = ClassTag(vClass)
    implicit val cmf: ClassTag[F] = ClassTag(fClass)
    def fn: (Path) => Boolean = (x: Path) => filter.call(x).booleanValue()
    ssc.fileStream[K, V, F](directory, fn, newFilesOnly)
  }

  /**
   * Create an input stream that monitors a Hadoop-compatible filesystem
   * for new files and reads them using the given key-value types and input format.
   * Files must be written to the monitored directory by "moving" them from another
   * location within the same file system. File names starting with . are ignored.
   * @param directory HDFS directory to monitor for new file
   * @param kClass class of key for reading HDFS file
   * @param vClass class of value for reading HDFS file
   * @param fClass class of input format for reading HDFS file
   * @param filter Function to filter paths to process
   * @param newFilesOnly Should process only new files and ignore existing files in the directory
   * @param conf Hadoop configuration
   * @tparam K Key type for reading HDFS file
   * @tparam V Value type for reading HDFS file
   * @tparam F Input format for reading HDFS file
   */
  def fileStream[K, V, F <: NewInputFormat[K, V]](
      directory: String,
      kClass: Class[K],
      vClass: Class[V],
      fClass: Class[F],
      filter: JFunction[Path, JBoolean],
      newFilesOnly: Boolean,
      conf: Configuration): JavaPairInputDStream[K, V] = {
    implicit val cmk: ClassTag[K] = ClassTag(kClass)
    implicit val cmv: ClassTag[V] = ClassTag(vClass)
    implicit val cmf: ClassTag[F] = ClassTag(fClass)
    def fn: (Path) => Boolean = (x: Path) => filter.call(x).booleanValue()
    ssc.fileStream[K, V, F](directory, fn, newFilesOnly, conf)
  }

  /**
   * Create an input stream from a queue of RDDs. In each batch,
   * it will process either one or all of the RDDs returned by the queue.
   *
   * @param queue      Queue of RDDs
   * @tparam T         Type of objects in the RDD
   *
   * @note
   * 1. Changes to the queue after the stream is created will not be recognized.
   * 2. Arbitrary RDDs can be added to `queueStream`, there is no way to recover data of
   * those RDDs, so `queueStream` doesn't support checkpointing.
   */
  def queueStream[T](queue: java.util.Queue[JavaRDD[T]]): JavaDStream[T] = {
    implicit val cm: ClassTag[T] =
      implicitly[ClassTag[AnyRef]].asInstanceOf[ClassTag[T]]
    val sQueue = new scala.collection.mutable.Queue[RDD[T]]
    sQueue ++= queue.asScala.map(_.rdd)
    ssc.queueStream(sQueue)
  }

  /**
   * Create an input stream from a queue of RDDs. In each batch,
   * it will process either one or all of the RDDs returned by the queue.
   *
   * @param queue      Queue of RDDs
   * @param oneAtATime Whether only one RDD should be consumed from the queue in every interval
   * @tparam T         Type of objects in the RDD
   *
   * @note
   * 1. Changes to the queue after the stream is created will not be recognized.
   * 2. Arbitrary RDDs can be added to `queueStream`, there is no way to recover data of
   * those RDDs, so `queueStream` doesn't support checkpointing.
   */
  def queueStream[T](
      queue: java.util.Queue[JavaRDD[T]],
      oneAtATime: Boolean
    ): JavaInputDStream[T] = {
    implicit val cm: ClassTag[T] =
      implicitly[ClassTag[AnyRef]].asInstanceOf[ClassTag[T]]
    val sQueue = new scala.collection.mutable.Queue[RDD[T]]
    sQueue ++= queue.asScala.map(_.rdd)
    ssc.queueStream(sQueue, oneAtATime)
  }

  /**
   * Create an input stream from a queue of RDDs. In each batch,
   * it will process either one or all of the RDDs returned by the queue.
   *
   * @note
   * 1. Changes to the queue after the stream is created will not be recognized.
   * 2. Arbitrary RDDs can be added to `queueStream`, there is no way to recover data of
   * those RDDs, so `queueStream` doesn't support checkpointing.
   *
   * @param queue      Queue of RDDs
   * @param oneAtATime Whether only one RDD should be consumed from the queue in every interval
   * @param defaultRDD Default RDD is returned by the DStream when the queue is empty
   * @tparam T         Type of objects in the RDD
   */
  def queueStream[T](
      queue: java.util.Queue[JavaRDD[T]],
      oneAtATime: Boolean,
      defaultRDD: JavaRDD[T]): JavaInputDStream[T] = {
    implicit val cm: ClassTag[T] =
      implicitly[ClassTag[AnyRef]].asInstanceOf[ClassTag[T]]
    val sQueue = new scala.collection.mutable.Queue[RDD[T]]
    sQueue ++= queue.asScala.map(_.rdd)
    ssc.queueStream(sQueue, oneAtATime, defaultRDD.rdd)
  }

  /**
     * Create an input stream with any arbitrary user implemented receiver.
     * Find more details at: https://spark.apache.org/docs/latest/streaming-custom-receivers.html
     * @param receiver Custom implementation of Receiver
     */
  def receiverStream[T](receiver: Receiver[T]): JavaReceiverInputDStream[T] = {
    implicit val cm: ClassTag[T] =
      implicitly[ClassTag[AnyRef]].asInstanceOf[ClassTag[T]]
    ssc.receiverStream(receiver)
  }

  /**
   * Create a unified DStream from multiple DStreams of the same type and same slide duration.
   */
  @varargs
  def union[T](jdstreams: JavaDStream[T]*): JavaDStream[T] = {
    require(jdstreams.nonEmpty, "Union called on no streams")
    implicit val cm: ClassTag[T] = jdstreams.head.classTag
    ssc.union(jdstreams.map(_.dstream))(cm)
  }

  /**
   * Create a unified DStream from multiple DStreams of the same type and same slide duration.
   */
  @varargs
  def union[K, V](jdstreams: JavaPairDStream[K, V]*): JavaPairDStream[K, V] = {
    require(jdstreams.nonEmpty, "Union called on no streams")
    implicit val cm: ClassTag[(K, V)] = jdstreams.head.classTag
    implicit val kcm: ClassTag[K] = jdstreams.head.kManifest
    implicit val vcm: ClassTag[V] = jdstreams.head.vManifest
    new JavaPairDStream[K, V](ssc.union(jdstreams.map(_.dstream))(cm))(kcm, vcm)
  }

  /**
   * Create a new DStream in which each RDD is generated by applying a function on RDDs of
   * the DStreams. The order of the JavaRDDs in the transform function parameter will be the
   * same as the order of corresponding DStreams in the list.
   *
   * @note For adding a JavaPairDStream in the list of JavaDStreams, convert it to a
   * JavaDStream using [[org.apache.spark.streaming.api.java.JavaPairDStream]].toJavaDStream().
   * In the transform function, convert the JavaRDD corresponding to that JavaDStream to
   * a JavaPairRDD using org.apache.spark.api.java.JavaPairRDD.fromJavaRDD().
   */
  def transform[T](
      dstreams: JList[JavaDStream[_]],
      transformFunc: JFunction2[JList[JavaRDD[_]], Time, JavaRDD[T]]
    ): JavaDStream[T] = {
    implicit val cmt: ClassTag[T] =
      implicitly[ClassTag[AnyRef]].asInstanceOf[ClassTag[T]]
    val scalaTransformFunc = (rdds: Seq[RDD[_]], time: Time) => {
      val jrdds = rdds.map(JavaRDD.fromRDD(_)).asJava
      transformFunc.call(jrdds, time).rdd
    }
    ssc.transform(dstreams.asScala.map(_.dstream).toSeq, scalaTransformFunc)
  }

  /**
   * Create a new DStream in which each RDD is generated by applying a function on RDDs of
   * the DStreams. The order of the JavaRDDs in the transform function parameter will be the
   * same as the order of corresponding DStreams in the list.
   *
   * @note For adding a JavaPairDStream in the list of JavaDStreams, convert it to
   * a JavaDStream using [[org.apache.spark.streaming.api.java.JavaPairDStream]].toJavaDStream().
   * In the transform function, convert the JavaRDD corresponding to that JavaDStream to
   * a JavaPairRDD using org.apache.spark.api.java.JavaPairRDD.fromJavaRDD().
   */
  def transformToPair[K, V](
      dstreams: JList[JavaDStream[_]],
      transformFunc: JFunction2[JList[JavaRDD[_]], Time, JavaPairRDD[K, V]]
    ): JavaPairDStream[K, V] = {
    implicit val cmk: ClassTag[K] =
      implicitly[ClassTag[AnyRef]].asInstanceOf[ClassTag[K]]
    implicit val cmv: ClassTag[V] =
      implicitly[ClassTag[AnyRef]].asInstanceOf[ClassTag[V]]
    val scalaTransformFunc = (rdds: Seq[RDD[_]], time: Time) => {
      val jrdds = rdds.map(JavaRDD.fromRDD(_)).asJava
      transformFunc.call(jrdds, time).rdd
    }
    ssc.transform(dstreams.asScala.map(_.dstream).toSeq, scalaTransformFunc)
  }

  /**
   * Sets the context to periodically checkpoint the DStream operations for master
   * fault-tolerance. The graph will be checkpointed every batch interval.
   * @param directory HDFS-compatible directory where the checkpoint data will be reliably stored
   */
  def checkpoint(directory: String): Unit = {
    ssc.checkpoint(directory)
  }

  /**
   * Sets each DStreams in this context to remember RDDs it generated in the last given duration.
   * DStreams remember RDDs only for a limited duration of duration and releases them for garbage
   * collection. This method allows the developer to specify how long to remember the RDDs (
   * if the developer wishes to query old data outside the DStream computation).
   * @param duration Minimum duration that each DStream should remember its RDDs
   */
  def remember(duration: Duration): Unit = {
    ssc.remember(duration)
  }

  /**
   * Add a [[org.apache.spark.streaming.scheduler.StreamingListener]] object for
   * receiving system events related to streaming.
   */
  def addStreamingListener(streamingListener: StreamingListener): Unit = {
    ssc.addStreamingListener(streamingListener)
  }

  /**
   * :: DeveloperApi ::
   *
   * Return the current state of the context. The context can be in three possible states -
   * <ul>
   *   <li>
   *   StreamingContextState.INITIALIZED - The context has been created, but not been started yet.
   *   Input DStreams, transformations and output operations can be created on the context.
   *   </li>
   *   <li>
   *   StreamingContextState.ACTIVE - The context has been started, and been not stopped.
   *   Input DStreams, transformations and output operations cannot be created on the context.
   *   </li>
   *   <li>
   *   StreamingContextState.STOPPED - The context has been stopped and cannot be used any more.
   *   </li>
   * </ul>
   */
  def getState(): StreamingContextState = {
    ssc.getState()
  }

  /**
   * Start the execution of the streams.
   */
  def start(): Unit = {
    ssc.start()
  }

  /**
   * Wait for the execution to stop. Any exceptions that occurs during the execution
   * will be thrown in this thread.
   */
  @throws[InterruptedException]
  def awaitTermination(): Unit = {
    ssc.awaitTermination()
  }

  /**
   * Wait for the execution to stop. Any exceptions that occurs during the execution
   * will be thrown in this thread.
   *
   * @param timeout time to wait in milliseconds
   * @return `true` if it's stopped; or throw the reported error during the execution; or `false`
   *         if the waiting time elapsed before returning from the method.
   */
  @throws[InterruptedException]
  def awaitTerminationOrTimeout(timeout: Long): Boolean = {
    ssc.awaitTerminationOrTimeout(timeout)
  }

  /**
   * Stop the execution of the streams. Will stop the associated JavaSparkContext as well.
   */
  def stop(): Unit = {
    ssc.stop()
  }

  /**
   * Stop the execution of the streams.
   * @param stopSparkContext Stop the associated SparkContext or not
   */
  def stop(stopSparkContext: Boolean): Unit = ssc.stop(stopSparkContext)

  /**
   * Stop the execution of the streams.
   * @param stopSparkContext Stop the associated SparkContext or not
   * @param stopGracefully Stop gracefully by waiting for the processing of all
   *                       received data to be completed
   */
  def stop(stopSparkContext: Boolean, stopGracefully: Boolean): Unit = {
    ssc.stop(stopSparkContext, stopGracefully)
  }

  override def close(): Unit = stop()

}

/**
 * JavaStreamingContext object contains a number of utility functions.
 */
object JavaStreamingContext {

  /**
   * Either recreate a StreamingContext from checkpoint data or create a new StreamingContext.
   * If checkpoint data exists in the provided `checkpointPath`, then StreamingContext will be
   * recreated from the checkpoint data. If the data does not exist, then the provided factory
   * will be used to create a JavaStreamingContext.
   *
   * @param checkpointPath Checkpoint directory used in an earlier JavaStreamingContext program
   * @param creatingFunc   Function to create a new JavaStreamingContext
   */
  def getOrCreate(
      checkpointPath: String,
      creatingFunc: JFunction0[JavaStreamingContext]
    ): JavaStreamingContext = {
    val ssc = StreamingContext.getOrCreate(checkpointPath, () => {
      creatingFunc.call().ssc
    })
    new JavaStreamingContext(ssc)
  }

  /**
   * Either recreate a StreamingContext from checkpoint data or create a new StreamingContext.
   * If checkpoint data exists in the provided `checkpointPath`, then StreamingContext will be
   * recreated from the checkpoint data. If the data does not exist, then the provided factory
   * will be used to create a JavaStreamingContext.
   *
   * @param checkpointPath Checkpoint directory used in an earlier StreamingContext program
   * @param creatingFunc   Function to create a new JavaStreamingContext
   * @param hadoopConf     Hadoop configuration if necessary for reading from any HDFS compatible
   *                       file system
   */
  def getOrCreate(
      checkpointPath: String,
      creatingFunc: JFunction0[JavaStreamingContext],
      hadoopConf: Configuration
    ): JavaStreamingContext = {
    val ssc = StreamingContext.getOrCreate(checkpointPath, () => {
      creatingFunc.call().ssc
    }, hadoopConf)
    new JavaStreamingContext(ssc)
  }

  /**
   * Either recreate a StreamingContext from checkpoint data or create a new StreamingContext.
   * If checkpoint data exists in the provided `checkpointPath`, then StreamingContext will be
   * recreated from the checkpoint data. If the data does not exist, then the provided factory
   * will be used to create a JavaStreamingContext.
   *
   * @param checkpointPath Checkpoint directory used in an earlier StreamingContext program
   * @param creatingFunc   Function to create a new JavaStreamingContext
   * @param hadoopConf     Hadoop configuration if necessary for reading from any HDFS compatible
   *                       file system
   * @param createOnError  Whether to create a new JavaStreamingContext if there is an
   *                       error in reading checkpoint data.
   */
  def getOrCreate(
      checkpointPath: String,
      creatingFunc: JFunction0[JavaStreamingContext],
      hadoopConf: Configuration,
      createOnError: Boolean
    ): JavaStreamingContext = {
    val ssc = StreamingContext.getOrCreate(checkpointPath, () => {
      creatingFunc.call().ssc
    }, hadoopConf, createOnError)
    new JavaStreamingContext(ssc)
  }

  /**
   * Find the JAR from which a given class was loaded, to make it easy for users to pass
   * their JARs to StreamingContext.
   */
  def jarOfClass(cls: Class[_]): Array[String] = SparkContext.jarOfClass(cls).toArray
}

相关信息

spark 源码目录

相关文章

spark JavaDStream 源码

spark JavaDStreamLike 源码

spark JavaInputDStream 源码

spark JavaMapWithStateDStream 源码

spark JavaPairDStream 源码

spark JavaPairInputDStream 源码

spark JavaPairReceiverInputDStream 源码

spark JavaReceiverInputDStream 源码

spark JavaStreamingListener 源码

spark JavaStreamingListenerWrapper 源码

0  赞