spark JavaDStream 源码

  • 2022-10-20
  • 浏览 (319)

spark JavaDStream 代码

文件路径:/streaming/src/main/scala/org/apache/spark/streaming/api/java/JavaDStream.scala

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.spark.streaming.api.java

import scala.language.implicitConversions
import scala.reflect.ClassTag

import org.apache.spark.api.java.JavaRDD
import org.apache.spark.api.java.function.{Function => JFunction}
import org.apache.spark.rdd.RDD
import org.apache.spark.storage.StorageLevel
import org.apache.spark.streaming.{Duration, Time}
import org.apache.spark.streaming.dstream.DStream

/**
 * A Java-friendly interface to [[org.apache.spark.streaming.dstream.DStream]], the basic
 * abstraction in Spark Streaming that represents a continuous stream of data.
 * DStreams can either be created from live data (such as, data from TCP sockets, Kafka,
 * etc.) or it can be generated by transforming existing DStreams using operations such as `map`,
 * `window`. For operations applicable to key-value pair DStreams, see
 * [[org.apache.spark.streaming.api.java.JavaPairDStream]].
 */
class JavaDStream[T](val dstream: DStream[T])(implicit val classTag: ClassTag[T])
    extends AbstractJavaDStreamLike[T, JavaDStream[T], JavaRDD[T]] {

  override def wrapRDD(rdd: RDD[T]): JavaRDD[T] = JavaRDD.fromRDD(rdd)

  /** Return a new DStream containing only the elements that satisfy a predicate. */
  def filter(f: JFunction[T, java.lang.Boolean]): JavaDStream[T] =
    dstream.filter((x => f.call(x).booleanValue()))

  /** Persist RDDs of this DStream with the default storage level (MEMORY_ONLY_SER) */
  def cache(): JavaDStream[T] = dstream.cache()

  /** Persist RDDs of this DStream with the default storage level (MEMORY_ONLY_SER) */
  def persist(): JavaDStream[T] = dstream.persist()

  /** Persist the RDDs of this DStream with the given storage level */
  def persist(storageLevel: StorageLevel): JavaDStream[T] = dstream.persist(storageLevel)

  /** Generate an RDD for the given duration */
  def compute(validTime: Time): JavaRDD[T] = {
    dstream.compute(validTime) match {
      case Some(rdd) => new JavaRDD(rdd)
      case None => null
    }
  }

  /**
   * Return a new DStream in which each RDD contains all the elements in seen in a
   * sliding window of time over this DStream. The new DStream generates RDDs with
   * the same interval as this DStream.
   * @param windowDuration width of the window; must be a multiple of this DStream's interval.
   */
  def window(windowDuration: Duration): JavaDStream[T] =
    dstream.window(windowDuration)

  /**
   * Return a new DStream in which each RDD contains all the elements in seen in a
   * sliding window of time over this DStream.
   * @param windowDuration width of the window; must be a multiple of this DStream's
   *                       batching interval
   * @param slideDuration  sliding interval of the window (i.e., the interval after which
   *                       the new DStream will generate RDDs); must be a multiple of this
   *                       DStream's batching interval
   */
  def window(windowDuration: Duration, slideDuration: Duration): JavaDStream[T] =
    dstream.window(windowDuration, slideDuration)

  /**
   * Return a new DStream by unifying data of another DStream with this DStream.
   * @param that Another DStream having the same interval (i.e., slideDuration) as this DStream.
   */
  def union(that: JavaDStream[T]): JavaDStream[T] =
    dstream.union(that.dstream)

  /**
   * Return a new DStream with an increased or decreased level of parallelism. Each RDD in the
   * returned DStream has exactly numPartitions partitions.
   */
  def repartition(numPartitions: Int): JavaDStream[T] = dstream.repartition(numPartitions)
}

object JavaDStream {
  /**
   * Convert a scala [[org.apache.spark.streaming.dstream.DStream]] to a Java-friendly
   * [[org.apache.spark.streaming.api.java.JavaDStream]].
   */
  implicit def fromDStream[T: ClassTag](dstream: DStream[T]): JavaDStream[T] =
    new JavaDStream[T](dstream)
}

相关信息

spark 源码目录

相关文章

spark JavaDStreamLike 源码

spark JavaInputDStream 源码

spark JavaMapWithStateDStream 源码

spark JavaPairDStream 源码

spark JavaPairInputDStream 源码

spark JavaPairReceiverInputDStream 源码

spark JavaReceiverInputDStream 源码

spark JavaStreamingContext 源码

spark JavaStreamingListener 源码

spark JavaStreamingListenerWrapper 源码

0  赞