spark JavaDStream 源码
spark JavaDStream 代码
文件路径:/streaming/src/main/scala/org/apache/spark/streaming/api/java/JavaDStream.scala
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.spark.streaming.api.java
import scala.language.implicitConversions
import scala.reflect.ClassTag
import org.apache.spark.api.java.JavaRDD
import org.apache.spark.api.java.function.{Function => JFunction}
import org.apache.spark.rdd.RDD
import org.apache.spark.storage.StorageLevel
import org.apache.spark.streaming.{Duration, Time}
import org.apache.spark.streaming.dstream.DStream
/**
* A Java-friendly interface to [[org.apache.spark.streaming.dstream.DStream]], the basic
* abstraction in Spark Streaming that represents a continuous stream of data.
* DStreams can either be created from live data (such as, data from TCP sockets, Kafka,
* etc.) or it can be generated by transforming existing DStreams using operations such as `map`,
* `window`. For operations applicable to key-value pair DStreams, see
* [[org.apache.spark.streaming.api.java.JavaPairDStream]].
*/
class JavaDStream[T](val dstream: DStream[T])(implicit val classTag: ClassTag[T])
extends AbstractJavaDStreamLike[T, JavaDStream[T], JavaRDD[T]] {
override def wrapRDD(rdd: RDD[T]): JavaRDD[T] = JavaRDD.fromRDD(rdd)
/** Return a new DStream containing only the elements that satisfy a predicate. */
def filter(f: JFunction[T, java.lang.Boolean]): JavaDStream[T] =
dstream.filter((x => f.call(x).booleanValue()))
/** Persist RDDs of this DStream with the default storage level (MEMORY_ONLY_SER) */
def cache(): JavaDStream[T] = dstream.cache()
/** Persist RDDs of this DStream with the default storage level (MEMORY_ONLY_SER) */
def persist(): JavaDStream[T] = dstream.persist()
/** Persist the RDDs of this DStream with the given storage level */
def persist(storageLevel: StorageLevel): JavaDStream[T] = dstream.persist(storageLevel)
/** Generate an RDD for the given duration */
def compute(validTime: Time): JavaRDD[T] = {
dstream.compute(validTime) match {
case Some(rdd) => new JavaRDD(rdd)
case None => null
}
}
/**
* Return a new DStream in which each RDD contains all the elements in seen in a
* sliding window of time over this DStream. The new DStream generates RDDs with
* the same interval as this DStream.
* @param windowDuration width of the window; must be a multiple of this DStream's interval.
*/
def window(windowDuration: Duration): JavaDStream[T] =
dstream.window(windowDuration)
/**
* Return a new DStream in which each RDD contains all the elements in seen in a
* sliding window of time over this DStream.
* @param windowDuration width of the window; must be a multiple of this DStream's
* batching interval
* @param slideDuration sliding interval of the window (i.e., the interval after which
* the new DStream will generate RDDs); must be a multiple of this
* DStream's batching interval
*/
def window(windowDuration: Duration, slideDuration: Duration): JavaDStream[T] =
dstream.window(windowDuration, slideDuration)
/**
* Return a new DStream by unifying data of another DStream with this DStream.
* @param that Another DStream having the same interval (i.e., slideDuration) as this DStream.
*/
def union(that: JavaDStream[T]): JavaDStream[T] =
dstream.union(that.dstream)
/**
* Return a new DStream with an increased or decreased level of parallelism. Each RDD in the
* returned DStream has exactly numPartitions partitions.
*/
def repartition(numPartitions: Int): JavaDStream[T] = dstream.repartition(numPartitions)
}
object JavaDStream {
/**
* Convert a scala [[org.apache.spark.streaming.dstream.DStream]] to a Java-friendly
* [[org.apache.spark.streaming.api.java.JavaDStream]].
*/
implicit def fromDStream[T: ClassTag](dstream: DStream[T]): JavaDStream[T] =
new JavaDStream[T](dstream)
}
相关信息
相关文章
spark JavaMapWithStateDStream 源码
spark JavaPairReceiverInputDStream 源码
spark JavaReceiverInputDStream 源码
0
赞
- 所属分类: 前端技术
- 本文标签:
热门推荐
-
2、 - 优质文章
-
3、 gate.io
-
8、 golang
-
9、 openharmony
-
10、 Vue中input框自动聚焦