kafka GaussianThroughputGenerator 源码
kafka GaussianThroughputGenerator 代码
文件路径:/trogdor/src/main/java/org/apache/kafka/trogdor/workload/GaussianThroughputGenerator.java
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.kafka.trogdor.workload;
import com.fasterxml.jackson.annotation.JsonCreator;
import com.fasterxml.jackson.annotation.JsonProperty;
import org.apache.kafka.common.utils.Time;
import java.util.Random;
/*
* This throughput generator configures throughput with a gaussian normal distribution on a per-window basis. You can
* specify how many windows to keep the throughput at the rate before changing. All traffic will follow a gaussian
* distribution centered around `messagesPerWindowAverage` with a deviation of `messagesPerWindowDeviation`.
*
* The lower the window size, the smoother the traffic will be. Using a 100ms window offers no noticeable spikes in
* traffic while still being long enough to avoid too much overhead.
*
* Here is an example spec:
*
* {
* "type": "gaussian",
* "messagesPerWindowAverage": 50,
* "messagesPerWindowDeviation": 5,
* "windowsUntilRateChange": 100,
* "windowSizeMs": 100
* }
*
* This will produce a workload that runs on average 500 messages per second, however that speed will change every 10
* seconds due to the `windowSizeMs * windowsUntilRateChange` parameters. The throughput will have the following
* normal distribution:
*
* An average of the throughput windows of 500 messages per second.
* ~68% of the throughput windows are between 450 and 550 messages per second.
* ~95% of the throughput windows are between 400 and 600 messages per second.
* ~99% of the throughput windows are between 350 and 650 messages per second.
*
*/
public class GaussianThroughputGenerator implements ThroughputGenerator {
private final int messagesPerWindowAverage;
private final double messagesPerWindowDeviation;
private final int windowsUntilRateChange;
private final long windowSizeMs;
private final Random random = new Random();
private long nextWindowStarts = 0;
private int messageTracker = 0;
private int windowTracker = 0;
private int throttleMessages = 0;
@JsonCreator
public GaussianThroughputGenerator(@JsonProperty("messagesPerWindowAverage") int messagesPerWindowAverage,
@JsonProperty("messagesPerWindowDeviation") double messagesPerWindowDeviation,
@JsonProperty("windowsUntilRateChange") int windowsUntilRateChange,
@JsonProperty("windowSizeMs") long windowSizeMs) {
// Calculate the default values.
if (windowSizeMs <= 0) {
windowSizeMs = 100;
}
this.windowSizeMs = windowSizeMs;
this.messagesPerWindowAverage = messagesPerWindowAverage;
this.messagesPerWindowDeviation = messagesPerWindowDeviation;
this.windowsUntilRateChange = windowsUntilRateChange;
// Calculate the first window.
calculateNextWindow(true);
}
@JsonProperty
public int messagesPerWindowAverage() {
return messagesPerWindowAverage;
}
@JsonProperty
public double messagesPerWindowDeviation() {
return messagesPerWindowDeviation;
}
@JsonProperty
public long windowsUntilRateChange() {
return windowsUntilRateChange;
}
@JsonProperty
public long windowSizeMs() {
return windowSizeMs;
}
private synchronized void calculateNextWindow(boolean force) {
// Reset the message count.
messageTracker = 0;
// Calculate the next window start time.
long now = Time.SYSTEM.milliseconds();
if (nextWindowStarts > 0) {
while (nextWindowStarts < now) {
nextWindowStarts += windowSizeMs;
}
} else {
nextWindowStarts = now + windowSizeMs;
}
// Check the windows between rate changes.
if ((windowTracker > windowsUntilRateChange) || force) {
windowTracker = 0;
// Calculate the number of messages allowed in this window using a normal distribution.
// The formula is: Messages = Gaussian * Deviation + Average
throttleMessages = Math.max((int) (random.nextGaussian() * messagesPerWindowDeviation) + messagesPerWindowAverage, 1);
}
windowTracker += 1;
}
@Override
public synchronized void throttle() throws InterruptedException {
// Calculate the next window if we've moved beyond the current one.
if (Time.SYSTEM.milliseconds() >= nextWindowStarts) {
calculateNextWindow(false);
}
// Increment the message tracker.
messageTracker += 1;
// Compare the tracked message count with the throttle limits.
if (messageTracker >= throttleMessages) {
// Wait the difference in time between now and when the next window starts.
while (nextWindowStarts > Time.SYSTEM.milliseconds()) {
wait(nextWindowStarts - Time.SYSTEM.milliseconds());
}
}
}
}
相关信息
相关文章
kafka ConfigurableProducerSpec 源码
kafka ConfigurableProducerWorker 源码
kafka ConnectionStressWorker 源码
kafka ConstantFlushGenerator 源码
kafka ConstantPayloadGenerator 源码
0
赞
热门推荐
-
2、 - 优质文章
-
3、 gate.io
-
8、 golang
-
9、 openharmony
-
10、 Vue中input框自动聚焦