spark Distribution 源码

  • 2022-10-20
  • 浏览 (349)

spark Distribution 代码

文件路径:/core/src/main/scala/org/apache/spark/util/Distribution.scala

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.spark.util

import java.io.PrintStream

import scala.collection.immutable.IndexedSeq

/**
 * Util for getting some stats from a small sample of numeric values, with some handy
 * summary functions.
 *
 * Entirely in memory, not intended as a good way to compute stats over large data sets.
 *
 * Assumes you are giving it a non-empty set of data
 */
private[spark] class Distribution(val data: Array[Double], val startIdx: Int, val endIdx: Int) {
  require(startIdx < endIdx)
  def this(data: Iterable[Double]) = this(data.toArray, 0, data.size)
  java.util.Arrays.sort(data, startIdx, endIdx)
  val length = endIdx - startIdx

  val defaultProbabilities = Array(0, 0.25, 0.5, 0.75, 1.0)

  /**
   * Get the value of the distribution at the given probabilities.  Probabilities should be
   * given from 0 to 1
   * @param probabilities
   */
  def getQuantiles(probabilities: Iterable[Double] = defaultProbabilities)
      : IndexedSeq[Double] = {
    probabilities.toIndexedSeq.map { p: Double => data(closestIndex(p)) }
  }

  private def closestIndex(p: Double) = {
    math.min((p * length).toInt + startIdx, endIdx - 1)
  }

  def showQuantiles(out: PrintStream = System.out): Unit = {
    // scalastyle:off println
    out.println("min\t25%\t50%\t75%\tmax")
    getQuantiles(defaultProbabilities).foreach{q => out.print(q + "\t")}
    out.println
    // scalastyle:on println
  }

  def statCounter: StatCounter = StatCounter(data.slice(startIdx, endIdx))

  /**
   * print a summary of this distribution to the given PrintStream.
   * @param out
   */
  def summary(out: PrintStream = System.out): Unit = {
    // scalastyle:off println
    out.println(statCounter)
    showQuantiles(out)
    // scalastyle:on println
  }
}

private[spark] object Distribution {

  def apply(data: Iterable[Double]): Option[Distribution] = {
    if (data.size > 0) {
      Some(new Distribution(data))
    } else {
      None
    }
  }

  def showQuantiles(out: PrintStream = System.out, quantiles: Iterable[Double]): Unit = {
    // scalastyle:off println
    out.println("min\t25%\t50%\t75%\tmax")
    quantiles.foreach{q => out.print(q + "\t")}
    out.println
    // scalastyle:on println
  }
}

相关信息

spark 源码目录

相关文章

spark AccumulatorV2 源码

spark ByteBufferInputStream 源码

spark ByteBufferOutputStream 源码

spark CausedBy 源码

spark Clock 源码

spark ClosureCleaner 源码

spark CollectionsUtils 源码

spark CommandLineUtils 源码

spark CompletionIterator 源码

spark DependencyUtils 源码

0  赞