spark ReducedWindowedDStream 源码
spark ReducedWindowedDStream 代码
文件路径:/streaming/src/main/scala/org/apache/spark/streaming/dstream/ReducedWindowedDStream.scala
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.spark.streaming.dstream
import scala.collection.mutable.ArrayBuffer
import scala.reflect.ClassTag
import org.apache.spark.Partitioner
import org.apache.spark.rdd.{CoGroupedRDD, RDD}
import org.apache.spark.storage.StorageLevel
import org.apache.spark.streaming.{Duration, Interval, Time}
private[streaming]
class ReducedWindowedDStream[K: ClassTag, V: ClassTag](
parent: DStream[(K, V)],
reduceFunc: (V, V) => V,
invReduceFunc: (V, V) => V,
filterFunc: Option[((K, V)) => Boolean],
_windowDuration: Duration,
_slideDuration: Duration,
partitioner: Partitioner
) extends DStream[(K, V)](parent.ssc) {
require(_windowDuration.isMultipleOf(parent.slideDuration),
"The window duration of ReducedWindowedDStream (" + _windowDuration + ") " +
"must be multiple of the slide duration of parent DStream (" + parent.slideDuration + ")"
)
require(_slideDuration.isMultipleOf(parent.slideDuration),
"The slide duration of ReducedWindowedDStream (" + _slideDuration + ") " +
"must be multiple of the slide duration of parent DStream (" + parent.slideDuration + ")"
)
// Reduce each batch of data using reduceByKey which will be further reduced by window
// by ReducedWindowedDStream
private val reducedStream = parent.reduceByKey(reduceFunc, partitioner)
// Persist RDDs to memory by default as these RDDs are going to be reused.
super.persist(StorageLevel.MEMORY_ONLY_SER)
reducedStream.persist(StorageLevel.MEMORY_ONLY_SER)
def windowDuration: Duration = _windowDuration
override def dependencies: List[DStream[_]] = List(reducedStream)
override def slideDuration: Duration = _slideDuration
override val mustCheckpoint = true
override def parentRememberDuration: Duration = rememberDuration + windowDuration
override def persist(storageLevel: StorageLevel): DStream[(K, V)] = {
super.persist(storageLevel)
reducedStream.persist(storageLevel)
this
}
override def checkpoint(interval: Duration): DStream[(K, V)] = {
super.checkpoint(interval)
// reducedStream.checkpoint(interval)
this
}
override def compute(validTime: Time): Option[RDD[(K, V)]] = {
val reduceF = reduceFunc
val invReduceF = invReduceFunc
val currentTime = validTime
val currentWindow = new Interval(currentTime - windowDuration + parent.slideDuration,
currentTime)
val previousWindow = currentWindow - slideDuration
logDebug("Window time = " + windowDuration)
logDebug("Slide time = " + slideDuration)
logDebug("Zero time = " + zeroTime)
logDebug("Current window = " + currentWindow)
logDebug("Previous window = " + previousWindow)
// _____________________________
// | previous window _________|___________________
// |___________________| current window | --------------> Time
// |_____________________________|
//
// |________ _________| |________ _________|
// | |
// V V
// old RDDs new RDDs
//
// Get the RDDs of the reduced values in "old time steps"
val oldRDDs =
reducedStream.slice(previousWindow.beginTime, currentWindow.beginTime - parent.slideDuration)
logDebug("# old RDDs = " + oldRDDs.size)
// Get the RDDs of the reduced values in "new time steps"
val newRDDs =
reducedStream.slice(previousWindow.endTime + parent.slideDuration, currentWindow.endTime)
logDebug("# new RDDs = " + newRDDs.size)
// Get the RDD of the reduced value of the previous window
val previousWindowRDD =
getOrCompute(previousWindow.endTime).getOrElse(ssc.sc.makeRDD(Seq[(K, V)]()))
// Make the list of RDDs that needs to cogrouped together for reducing their reduced values
val allRDDs = new ArrayBuffer[RDD[(K, V)]]() += previousWindowRDD ++= oldRDDs ++= newRDDs
// Cogroup the reduced RDDs and merge the reduced values
val cogroupedRDD = new CoGroupedRDD[K](allRDDs.toSeq.asInstanceOf[Seq[RDD[(K, _)]]],
partitioner)
// val mergeValuesFunc = mergeValues(oldRDDs.size, newRDDs.size) _
val numOldValues = oldRDDs.size
val numNewValues = newRDDs.size
val mergeValues = (arrayOfValues: Array[Iterable[V]]) => {
if (arrayOfValues.length != 1 + numOldValues + numNewValues) {
throw new Exception("Unexpected number of sequences of reduced values")
}
// Getting reduced values "old time steps" that will be removed from current window
val oldValues = (1 to numOldValues).map(i => arrayOfValues(i)).filter(!_.isEmpty).map(_.head)
// Getting reduced values "new time steps"
val newValues =
(1 to numNewValues).map(i => arrayOfValues(numOldValues + i)).filter(!_.isEmpty).map(_.head)
if (arrayOfValues(0).isEmpty) {
// If previous window's reduce value does not exist, then at least new values should exist
if (newValues.isEmpty) {
throw new Exception("Neither previous window has value for key, nor new values found. " +
"Are you sure your key class hashes consistently?")
}
// Reduce the new values
newValues.reduce(reduceF) // return
} else {
// Get the previous window's reduced value
var tempValue = arrayOfValues(0).head
// If old values exists, then inverse reduce then from previous value
if (!oldValues.isEmpty) {
tempValue = invReduceF(tempValue, oldValues.reduce(reduceF))
}
// If new values exists, then reduce them with previous value
if (!newValues.isEmpty) {
tempValue = reduceF(tempValue, newValues.reduce(reduceF))
}
tempValue // return
}
}
val mergedValuesRDD = cogroupedRDD.asInstanceOf[RDD[(K, Array[Iterable[V]])]]
.mapValues(mergeValues)
if (filterFunc.isDefined) {
Some(mergedValuesRDD.filter(filterFunc.get))
} else {
Some(mergedValuesRDD)
}
}
}
相关信息
相关文章
0
赞
- 所属分类: 前端技术
- 本文标签:
热门推荐
-
2、 - 优质文章
-
3、 gate.io
-
8、 golang
-
9、 openharmony
-
10、 Vue中input框自动聚焦