spark ReducedWindowedDStream 源码

  • 2022-10-20
  • 浏览 (190)

spark ReducedWindowedDStream 代码

文件路径:/streaming/src/main/scala/org/apache/spark/streaming/dstream/ReducedWindowedDStream.scala

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.spark.streaming.dstream

import scala.collection.mutable.ArrayBuffer
import scala.reflect.ClassTag

import org.apache.spark.Partitioner
import org.apache.spark.rdd.{CoGroupedRDD, RDD}
import org.apache.spark.storage.StorageLevel
import org.apache.spark.streaming.{Duration, Interval, Time}

private[streaming]
class ReducedWindowedDStream[K: ClassTag, V: ClassTag](
    parent: DStream[(K, V)],
    reduceFunc: (V, V) => V,
    invReduceFunc: (V, V) => V,
    filterFunc: Option[((K, V)) => Boolean],
    _windowDuration: Duration,
    _slideDuration: Duration,
    partitioner: Partitioner
  ) extends DStream[(K, V)](parent.ssc) {

  require(_windowDuration.isMultipleOf(parent.slideDuration),
    "The window duration of ReducedWindowedDStream (" + _windowDuration + ") " +
      "must be multiple of the slide duration of parent DStream (" + parent.slideDuration + ")"
  )

  require(_slideDuration.isMultipleOf(parent.slideDuration),
    "The slide duration of ReducedWindowedDStream (" + _slideDuration + ") " +
      "must be multiple of the slide duration of parent DStream (" + parent.slideDuration + ")"
  )

  // Reduce each batch of data using reduceByKey which will be further reduced by window
  // by ReducedWindowedDStream
  private val reducedStream = parent.reduceByKey(reduceFunc, partitioner)

  // Persist RDDs to memory by default as these RDDs are going to be reused.
  super.persist(StorageLevel.MEMORY_ONLY_SER)
  reducedStream.persist(StorageLevel.MEMORY_ONLY_SER)

  def windowDuration: Duration = _windowDuration

  override def dependencies: List[DStream[_]] = List(reducedStream)

  override def slideDuration: Duration = _slideDuration

  override val mustCheckpoint = true

  override def parentRememberDuration: Duration = rememberDuration + windowDuration

  override def persist(storageLevel: StorageLevel): DStream[(K, V)] = {
    super.persist(storageLevel)
    reducedStream.persist(storageLevel)
    this
  }

  override def checkpoint(interval: Duration): DStream[(K, V)] = {
    super.checkpoint(interval)
    // reducedStream.checkpoint(interval)
    this
  }

  override def compute(validTime: Time): Option[RDD[(K, V)]] = {
    val reduceF = reduceFunc
    val invReduceF = invReduceFunc

    val currentTime = validTime
    val currentWindow = new Interval(currentTime - windowDuration + parent.slideDuration,
      currentTime)
    val previousWindow = currentWindow - slideDuration

    logDebug("Window time = " + windowDuration)
    logDebug("Slide time = " + slideDuration)
    logDebug("Zero time = " + zeroTime)
    logDebug("Current window = " + currentWindow)
    logDebug("Previous window = " + previousWindow)

    //  _____________________________
    // |  previous window   _________|___________________
    // |___________________|       current window        |  --------------> Time
    //                     |_____________________________|
    //
    // |________ _________|          |________ _________|
    //          |                             |
    //          V                             V
    //       old RDDs                     new RDDs
    //

    // Get the RDDs of the reduced values in "old time steps"
    val oldRDDs =
      reducedStream.slice(previousWindow.beginTime, currentWindow.beginTime - parent.slideDuration)
    logDebug("# old RDDs = " + oldRDDs.size)

    // Get the RDDs of the reduced values in "new time steps"
    val newRDDs =
      reducedStream.slice(previousWindow.endTime + parent.slideDuration, currentWindow.endTime)
    logDebug("# new RDDs = " + newRDDs.size)

    // Get the RDD of the reduced value of the previous window
    val previousWindowRDD =
      getOrCompute(previousWindow.endTime).getOrElse(ssc.sc.makeRDD(Seq[(K, V)]()))

    // Make the list of RDDs that needs to cogrouped together for reducing their reduced values
    val allRDDs = new ArrayBuffer[RDD[(K, V)]]() += previousWindowRDD ++= oldRDDs ++= newRDDs

    // Cogroup the reduced RDDs and merge the reduced values
    val cogroupedRDD = new CoGroupedRDD[K](allRDDs.toSeq.asInstanceOf[Seq[RDD[(K, _)]]],
      partitioner)
    // val mergeValuesFunc = mergeValues(oldRDDs.size, newRDDs.size) _

    val numOldValues = oldRDDs.size
    val numNewValues = newRDDs.size

    val mergeValues = (arrayOfValues: Array[Iterable[V]]) => {
      if (arrayOfValues.length != 1 + numOldValues + numNewValues) {
        throw new Exception("Unexpected number of sequences of reduced values")
      }
      // Getting reduced values "old time steps" that will be removed from current window
      val oldValues = (1 to numOldValues).map(i => arrayOfValues(i)).filter(!_.isEmpty).map(_.head)
      // Getting reduced values "new time steps"
      val newValues =
        (1 to numNewValues).map(i => arrayOfValues(numOldValues + i)).filter(!_.isEmpty).map(_.head)

      if (arrayOfValues(0).isEmpty) {
        // If previous window's reduce value does not exist, then at least new values should exist
        if (newValues.isEmpty) {
          throw new Exception("Neither previous window has value for key, nor new values found. " +
            "Are you sure your key class hashes consistently?")
        }
        // Reduce the new values
        newValues.reduce(reduceF) // return
      } else {
        // Get the previous window's reduced value
        var tempValue = arrayOfValues(0).head
        // If old values exists, then inverse reduce then from previous value
        if (!oldValues.isEmpty) {
          tempValue = invReduceF(tempValue, oldValues.reduce(reduceF))
        }
        // If new values exists, then reduce them with previous value
        if (!newValues.isEmpty) {
          tempValue = reduceF(tempValue, newValues.reduce(reduceF))
        }
        tempValue // return
      }
    }

    val mergedValuesRDD = cogroupedRDD.asInstanceOf[RDD[(K, Array[Iterable[V]])]]
      .mapValues(mergeValues)

    if (filterFunc.isDefined) {
      Some(mergedValuesRDD.filter(filterFunc.get))
    } else {
      Some(mergedValuesRDD)
    }
  }
}

相关信息

spark 源码目录

相关文章

spark ConstantInputDStream 源码

spark DStream 源码

spark DStreamCheckpointData 源码

spark FileInputDStream 源码

spark FilteredDStream 源码

spark FlatMapValuedDStream 源码

spark FlatMappedDStream 源码

spark ForEachDStream 源码

spark GlommedDStream 源码

spark InputDStream 源码

0  赞