spark DStream 源码

  • 2022-10-20
  • 浏览 (302)

spark DStream 代码

文件路径:/streaming/src/main/scala/org/apache/spark/streaming/dstream/DStream.scala

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.spark.streaming.dstream


import java.io.{IOException, ObjectInputStream, ObjectOutputStream}

import scala.collection.mutable.HashMap
import scala.language.implicitConversions
import scala.reflect.ClassTag
import scala.util.matching.Regex

import org.apache.spark.{SparkContext, SparkException}
import org.apache.spark.internal.Logging
import org.apache.spark.internal.io.SparkHadoopWriterUtils
import org.apache.spark.rdd.{BlockRDD, RDD, RDDOperationScope}
import org.apache.spark.storage.StorageLevel
import org.apache.spark.streaming._
import org.apache.spark.streaming.StreamingConf.STREAMING_UNPERSIST
import org.apache.spark.streaming.StreamingContext.rddToFileName
import org.apache.spark.streaming.scheduler.Job
import org.apache.spark.ui.{UIUtils => SparkUIUtils}
import org.apache.spark.util.{CallSite, Utils}

/**
 * A Discretized Stream (DStream), the basic abstraction in Spark Streaming, is a continuous
 * sequence of RDDs (of the same type) representing a continuous stream of data (see
 * org.apache.spark.rdd.RDD in the Spark core documentation for more details on RDDs).
 * DStreams can either be created from live data (such as, data from TCP sockets, Kafka,
 * etc.) using a [[org.apache.spark.streaming.StreamingContext]] or it can be generated by
 * transforming existing DStreams using operations such as `map`,
 * `window` and `reduceByKeyAndWindow`. While a Spark Streaming program is running, each DStream
 * periodically generates a RDD, either from live data or by transforming the RDD generated by a
 * parent DStream.
 *
 * This class contains the basic operations available on all DStreams, such as `map`, `filter` and
 * `window`. In addition, [[org.apache.spark.streaming.dstream.PairDStreamFunctions]] contains
 * operations available only on DStreams of key-value pairs, such as `groupByKeyAndWindow` and
 * `join`. These operations are automatically available on any DStream of pairs
 * (e.g., DStream[(Int, Int)] through implicit conversions.
 *
 * A DStream internally is characterized by a few basic properties:
 *  - A list of other DStreams that the DStream depends on
 *  - A time interval at which the DStream generates an RDD
 *  - A function that is used to generate an RDD after each time interval
 */

abstract class DStream[T: ClassTag] (
    @transient private[streaming] var ssc: StreamingContext
  ) extends Serializable with Logging {

  validateAtInit()

  // =======================================================================
  // Methods that should be implemented by subclasses of DStream
  // =======================================================================

  /** Time interval after which the DStream generates an RDD */
  def slideDuration: Duration

  /** List of parent DStreams on which this DStream depends on */
  def dependencies: List[DStream[_]]

  /** Method that generates an RDD for the given time */
  def compute(validTime: Time): Option[RDD[T]]

  // =======================================================================
  // Methods and fields available on all DStreams
  // =======================================================================

  // RDDs generated, marked as private[streaming] so that testsuites can access it
  @transient
  private[streaming] var generatedRDDs = new HashMap[Time, RDD[T]]()

  // Time zero for the DStream
  private[streaming] var zeroTime: Time = null

  // Duration for which the DStream will remember each RDD created
  private[streaming] var rememberDuration: Duration = null

  // Storage level of the RDDs in the stream
  private[streaming] var storageLevel: StorageLevel = StorageLevel.NONE

  // Checkpoint details
  private[streaming] val mustCheckpoint = false
  private[streaming] var checkpointDuration: Duration = null
  private[streaming] val checkpointData = new DStreamCheckpointData(this)
  @transient
  private var restoredFromCheckpointData = false

  // Reference to whole DStream graph
  private[streaming] var graph: DStreamGraph = null

  private[streaming] def isInitialized = zeroTime != null

  // Duration for which the DStream requires its parent DStream to remember each RDD created
  private[streaming] def parentRememberDuration = rememberDuration

  /** Return the StreamingContext associated with this DStream */
  def context: StreamingContext = ssc

  /* Set the creation call site */
  private[streaming] val creationSite = DStream.getCreationSite()

  /**
   * The base scope associated with the operation that created this DStream.
   *
   * This is the medium through which we pass the DStream operation name (e.g. updatedStateByKey)
   * to the RDDs created by this DStream. Note that we never use this scope directly in RDDs.
   * Instead, we instantiate a new scope during each call to `compute` based on this one.
   *
   * This is not defined if the DStream is created outside of one of the public DStream operations.
   */
  protected[streaming] val baseScope: Option[String] = {
    Option(ssc.sc.getLocalProperty(SparkContext.RDD_SCOPE_KEY))
  }

  /**
   * Make a scope that groups RDDs created in the same DStream operation in the same batch.
   *
   * Each DStream produces many scopes and each scope may be shared by other DStreams created
   * in the same operation. Separate calls to the same DStream operation create separate scopes.
   * For instance, `dstream.map(...).map(...)` creates two separate scopes per batch.
   */
  private def makeScope(time: Time): Option[RDDOperationScope] = {
    baseScope.map { bsJson =>
      val formattedBatchTime = SparkUIUtils.formatBatchTime(
        time.milliseconds, ssc.graph.batchDuration.milliseconds, showYYYYMMSS = false)
      val bs = RDDOperationScope.fromJson(bsJson)
      val baseName = bs.name // e.g. countByWindow, "kafka stream [0]"
      val scopeName =
        if (baseName.length > 10) {
          // If the operation name is too long, wrap the line
          s"$baseName\n@ $formattedBatchTime"
        } else {
          s"$baseName @ $formattedBatchTime"
        }
      val scopeId = s"${bs.id}_${time.milliseconds}"
      new RDDOperationScope(scopeName, id = scopeId)
    }
  }

  /** Persist the RDDs of this DStream with the given storage level */
  def persist(level: StorageLevel): DStream[T] = {
    if (this.isInitialized) {
      throw new UnsupportedOperationException(
        "Cannot change storage level of a DStream after streaming context has started")
    }
    this.storageLevel = level
    this
  }

  /** Persist RDDs of this DStream with the default storage level (MEMORY_ONLY_SER) */
  def persist(): DStream[T] = persist(StorageLevel.MEMORY_ONLY_SER)

  /** Persist RDDs of this DStream with the default storage level (MEMORY_ONLY_SER) */
  def cache(): DStream[T] = persist()

  /**
   * Enable periodic checkpointing of RDDs of this DStream
   * @param interval Time interval after which generated RDD will be checkpointed
   */
  def checkpoint(interval: Duration): DStream[T] = {
    if (isInitialized) {
      throw new UnsupportedOperationException(
        "Cannot change checkpoint interval of a DStream after streaming context has started")
    }
    persist()
    checkpointDuration = interval
    this
  }

  /**
   * Initialize the DStream by setting the "zero" time, based on which
   * the validity of future times is calculated. This method also recursively initializes
   * its parent DStreams.
   */
  private[streaming] def initialize(time: Time): Unit = {
    if (zeroTime != null && zeroTime != time) {
      throw new SparkException(s"ZeroTime is already initialized to $zeroTime"
        + s", cannot initialize it again to $time")
    }
    zeroTime = time

    // Set the checkpoint interval to be slideDuration or 10 seconds, which ever is larger
    if (mustCheckpoint && checkpointDuration == null) {
      checkpointDuration = slideDuration * math.ceil(Seconds(10) / slideDuration).toInt
      logInfo(s"Checkpoint interval automatically set to $checkpointDuration")
    }

    // Set the minimum value of the rememberDuration if not already set
    var minRememberDuration = slideDuration
    if (checkpointDuration != null && minRememberDuration <= checkpointDuration) {
      // times 2 just to be sure that the latest checkpoint is not forgotten (#paranoia)
      minRememberDuration = checkpointDuration * 2
    }
    if (rememberDuration == null || rememberDuration < minRememberDuration) {
      rememberDuration = minRememberDuration
    }

    // Initialize the dependencies
    dependencies.foreach(_.initialize(zeroTime))
  }

  private def validateAtInit(): Unit = {
    ssc.getState() match {
      case StreamingContextState.INITIALIZED =>
        // good to go
      case StreamingContextState.ACTIVE =>
        throw new IllegalStateException(
          "Adding new inputs, transformations, and output operations after " +
            "starting a context is not supported")
      case StreamingContextState.STOPPED =>
        throw new IllegalStateException(
          "Adding new inputs, transformations, and output operations after " +
            "stopping a context is not supported")
    }
  }

  private[streaming] def validateAtStart(): Unit = {
    require(rememberDuration != null, "Remember duration is set to null")

    require(
      !mustCheckpoint || checkpointDuration != null,
      s"The checkpoint interval for ${this.getClass.getSimpleName} has not been set." +
        " Please use DStream.checkpoint() to set the interval."
    )

    require(
     checkpointDuration == null || context.sparkContext.checkpointDir.isDefined,
      "The checkpoint directory has not been set. Please set it by StreamingContext.checkpoint()."
    )

    require(
      checkpointDuration == null || checkpointDuration >= slideDuration,
      s"The checkpoint interval for ${this.getClass.getSimpleName} has been set to " +
        s"$checkpointDuration which is lower than its slide time ($slideDuration). " +
        s"Please set it to at least $slideDuration."
    )

    require(
      checkpointDuration == null || checkpointDuration.isMultipleOf(slideDuration),
      s"The checkpoint interval for ${this.getClass.getSimpleName} has been set to " +
        s" $checkpointDuration which not a multiple of its slide time ($slideDuration). " +
        s"Please set it to a multiple of $slideDuration."
    )

    require(
      checkpointDuration == null || storageLevel != StorageLevel.NONE,
      s"${this.getClass.getSimpleName} has been marked for checkpointing but the storage " +
        "level has not been set to enable persisting. Please use DStream.persist() to set the " +
        "storage level to use memory for better checkpointing performance."
    )

    require(
      checkpointDuration == null || rememberDuration > checkpointDuration,
      s"The remember duration for ${this.getClass.getSimpleName} has been set to " +
        s" $rememberDuration which is not more than the checkpoint interval" +
        s" ($checkpointDuration). Please set it to a value higher than $checkpointDuration."
    )

    dependencies.foreach(_.validateAtStart())

    logInfo(s"Slide time = $slideDuration")
    logInfo(s"Storage level = ${storageLevel.description}")
    logInfo(s"Checkpoint interval = $checkpointDuration")
    logInfo(s"Remember interval = $rememberDuration")
    logInfo(s"Initialized and validated $this")
  }

  private[streaming] def setContext(s: StreamingContext): Unit = {
    if (ssc != null && ssc != s) {
      throw new SparkException(s"Context must not be set again for $this")
    }
    ssc = s
    logInfo(s"Set context for $this")
    dependencies.foreach(_.setContext(ssc))
  }

  private[streaming] def setGraph(g: DStreamGraph): Unit = {
    if (graph != null && graph != g) {
      throw new SparkException(s"Graph must not be set again for $this")
    }
    graph = g
    dependencies.foreach(_.setGraph(graph))
  }

  private[streaming] def remember(duration: Duration): Unit = {
    if (duration != null && (rememberDuration == null || duration > rememberDuration)) {
      rememberDuration = duration
      logInfo(s"Duration for remembering RDDs set to $rememberDuration for $this")
    }
    dependencies.foreach(_.remember(parentRememberDuration))
  }

  /** Checks whether the 'time' is valid wrt slideDuration for generating RDD */
  private[streaming] def isTimeValid(time: Time): Boolean = {
    if (!isInitialized) {
      throw new SparkException (this + " has not been initialized")
    } else if (time <= zeroTime || ! (time - zeroTime).isMultipleOf(slideDuration)) {
      logInfo(s"Time $time is invalid as zeroTime is $zeroTime" +
        s" , slideDuration is $slideDuration and difference is ${time - zeroTime}")
      false
    } else {
      logDebug(s"Time $time is valid")
      true
    }
  }

  /**
   * Get the RDD corresponding to the given time; either retrieve it from cache
   * or compute-and-cache it.
   */
  private[streaming] final def getOrCompute(time: Time): Option[RDD[T]] = {
    // If RDD was already generated, then retrieve it from HashMap,
    // or else compute the RDD
    generatedRDDs.get(time).orElse {
      // Compute the RDD if time is valid (e.g. correct time in a sliding window)
      // of RDD generation, else generate nothing.
      if (isTimeValid(time)) {

        val rddOption = createRDDWithLocalProperties(time, displayInnerRDDOps = false) {
          // Disable checks for existing output directories in jobs launched by the streaming
          // scheduler, since we may need to write output to an existing directory during checkpoint
          // recovery; see SPARK-4835 for more details. We need to have this call here because
          // compute() might cause Spark jobs to be launched.
          SparkHadoopWriterUtils.disableOutputSpecValidation.withValue(true) {
            compute(time)
          }
        }

        rddOption.foreach { case newRDD =>
          // Register the generated RDD for caching and checkpointing
          if (storageLevel != StorageLevel.NONE) {
            newRDD.persist(storageLevel)
            logDebug(s"Persisting RDD ${newRDD.id} for time $time to $storageLevel")
          }
          if (checkpointDuration != null && (time - zeroTime).isMultipleOf(checkpointDuration)) {
            newRDD.checkpoint()
            logInfo(s"Marking RDD ${newRDD.id} for time $time for checkpointing")
          }
          generatedRDDs.put(time, newRDD)
        }
        rddOption
      } else {
        None
      }
    }
  }

  /**
   * Wrap a body of code such that the call site and operation scope
   * information are passed to the RDDs created in this body properly.
   * @param body RDD creation code to execute with certain local properties.
   * @param time Current batch time that should be embedded in the scope names
   * @param displayInnerRDDOps Whether the detailed callsites and scopes of the inner RDDs generated
   *                           by `body` will be displayed in the UI; only the scope and callsite
   *                           of the DStream operation that generated `this` will be displayed.
   */
  protected[streaming] def createRDDWithLocalProperties[U](
      time: Time,
      displayInnerRDDOps: Boolean)(body: => U): U = {
    val scopeKey = SparkContext.RDD_SCOPE_KEY
    val scopeNoOverrideKey = SparkContext.RDD_SCOPE_NO_OVERRIDE_KEY
    // Pass this DStream's operation scope and creation site information to RDDs through
    // thread-local properties in our SparkContext. Since this method may be called from another
    // DStream, we need to temporarily store any old scope and creation site information to
    // restore them later after setting our own.
    val prevCallSite = CallSite(
      ssc.sparkContext.getLocalProperty(CallSite.SHORT_FORM),
      ssc.sparkContext.getLocalProperty(CallSite.LONG_FORM)
    )
    val prevScope = ssc.sparkContext.getLocalProperty(scopeKey)
    val prevScopeNoOverride = ssc.sparkContext.getLocalProperty(scopeNoOverrideKey)

    try {
      if (displayInnerRDDOps) {
        // Unset the short form call site, so that generated RDDs get their own
        ssc.sparkContext.setLocalProperty(CallSite.SHORT_FORM, null)
        ssc.sparkContext.setLocalProperty(CallSite.LONG_FORM, null)
      } else {
        // Set the callsite, so that the generated RDDs get the DStream's call site and
        // the internal RDD call sites do not get displayed
        ssc.sparkContext.setCallSite(creationSite)
      }

      // Use the DStream's base scope for this RDD so we can (1) preserve the higher level
      // DStream operation name, and (2) share this scope with other DStreams created in the
      // same operation. Disallow nesting so that low-level Spark primitives do not show up.
      // TODO: merge callsites with scopes so we can just reuse the code there
      makeScope(time).foreach { s =>
        ssc.sparkContext.setLocalProperty(scopeKey, s.toJson)
        if (displayInnerRDDOps) {
          // Allow inner RDDs to add inner scopes
          ssc.sparkContext.setLocalProperty(scopeNoOverrideKey, null)
        } else {
          // Do not allow inner RDDs to override the scope set by DStream
          ssc.sparkContext.setLocalProperty(scopeNoOverrideKey, "true")
        }
      }

      body
    } finally {
      // Restore any state that was modified before returning
      ssc.sparkContext.setCallSite(prevCallSite)
      ssc.sparkContext.setLocalProperty(scopeKey, prevScope)
      ssc.sparkContext.setLocalProperty(scopeNoOverrideKey, prevScopeNoOverride)
    }
  }

  /**
   * Generate a SparkStreaming job for the given time. This is an internal method that
   * should not be called directly. This default implementation creates a job
   * that materializes the corresponding RDD. Subclasses of DStream may override this
   * to generate their own jobs.
   */
  private[streaming] def generateJob(time: Time): Option[Job] = {
    getOrCompute(time) match {
      case Some(rdd) =>
        val jobFunc = () => {
          val emptyFunc = { (iterator: Iterator[T]) => {} }
          context.sparkContext.runJob(rdd, emptyFunc)
        }
        Some(new Job(time, jobFunc))
      case None => None
    }
  }

  /**
   * Clear metadata that are older than `rememberDuration` of this DStream.
   * This is an internal method that should not be called directly. This default
   * implementation clears the old generated RDDs. Subclasses of DStream may override
   * this to clear their own metadata along with the generated RDDs.
   */
  private[streaming] def clearMetadata(time: Time): Unit = {
    val unpersistData = ssc.conf.get(STREAMING_UNPERSIST)
    val oldRDDs = generatedRDDs.filter(_._1 <= (time - rememberDuration))
    logDebug("Clearing references to old RDDs: [" +
      oldRDDs.map(x => s"${x._1} -> ${x._2.id}").mkString(", ") + "]")
    generatedRDDs --= oldRDDs.keys
    if (unpersistData) {
      logDebug(s"Unpersisting old RDDs: ${oldRDDs.values.map(_.id).mkString(", ")}")
      oldRDDs.values.foreach { rdd =>
        rdd.unpersist()
        // Explicitly remove blocks of BlockRDD
        rdd match {
          case b: BlockRDD[_] =>
            logInfo(s"Removing blocks of RDD $b of time $time")
            b.removeBlocks()
          case _ =>
        }
      }
    }
    logDebug(s"Cleared ${oldRDDs.size} RDDs that were older than " +
      s"${time - rememberDuration}: ${oldRDDs.keys.mkString(", ")}")
    dependencies.foreach(_.clearMetadata(time))
  }

  /**
   * Refresh the list of checkpointed RDDs that will be saved along with checkpoint of
   * this stream. This is an internal method that should not be called directly. This is
   * a default implementation that saves only the file names of the checkpointed RDDs to
   * checkpointData. Subclasses of DStream (especially those of InputDStream) may override
   * this method to save custom checkpoint data.
   */
  private[streaming] def updateCheckpointData(currentTime: Time): Unit = {
    logDebug(s"Updating checkpoint data for time $currentTime")
    checkpointData.update(currentTime)
    dependencies.foreach(_.updateCheckpointData(currentTime))
    logDebug(s"Updated checkpoint data for time $currentTime: $checkpointData")
  }

  private[streaming] def clearCheckpointData(time: Time): Unit = {
    logDebug("Clearing checkpoint data")
    checkpointData.cleanup(time)
    dependencies.foreach(_.clearCheckpointData(time))
    logDebug("Cleared checkpoint data")
  }

  /**
   * Restore the RDDs in generatedRDDs from the checkpointData. This is an internal method
   * that should not be called directly. This is a default implementation that recreates RDDs
   * from the checkpoint file names stored in checkpointData. Subclasses of DStream that
   * override the updateCheckpointData() method would also need to override this method.
   */
  private[streaming] def restoreCheckpointData(): Unit = {
    if (!restoredFromCheckpointData) {
      // Create RDDs from the checkpoint data
      logInfo("Restoring checkpoint data")
      checkpointData.restore()
      dependencies.foreach(_.restoreCheckpointData())
      restoredFromCheckpointData = true
      logInfo("Restored checkpoint data")
    }
  }

  @throws(classOf[IOException])
  private def writeObject(oos: ObjectOutputStream): Unit = Utils.tryOrIOException {
    logDebug(s"${this.getClass().getSimpleName}.writeObject used")
    if (graph != null) {
      graph.synchronized {
        if (graph.checkpointInProgress) {
          oos.defaultWriteObject()
        } else {
          val msg = s"Object of ${this.getClass.getName} is being serialized " +
            " possibly as a part of closure of an RDD operation. This is because " +
            " the DStream object is being referred to from within the closure. " +
            " Please rewrite the RDD operation inside this DStream to avoid this. " +
            " This has been enforced to avoid bloating of Spark tasks " +
            " with unnecessary objects."
          throw new java.io.NotSerializableException(msg)
        }
      }
    } else {
      throw new java.io.NotSerializableException(
        "Graph is unexpectedly null when DStream is being serialized.")
    }
  }

  @throws(classOf[IOException])
  private def readObject(ois: ObjectInputStream): Unit = Utils.tryOrIOException {
    logDebug(s"${this.getClass().getSimpleName}.readObject used")
    ois.defaultReadObject()
    generatedRDDs = new HashMap[Time, RDD[T]]()
  }

  // =======================================================================
  // DStream operations
  // =======================================================================

  /** Return a new DStream by applying a function to all elements of this DStream. */
  def map[U: ClassTag](mapFunc: T => U): DStream[U] = ssc.withScope {
    new MappedDStream(this, context.sparkContext.clean(mapFunc))
  }

  /**
   * Return a new DStream by applying a function to all elements of this DStream,
   * and then flattening the results
   */
  def flatMap[U: ClassTag](flatMapFunc: T => TraversableOnce[U]): DStream[U] = ssc.withScope {
    new FlatMappedDStream(this, context.sparkContext.clean(flatMapFunc))
  }

  /** Return a new DStream containing only the elements that satisfy a predicate. */
  def filter(filterFunc: T => Boolean): DStream[T] = ssc.withScope {
    new FilteredDStream(this, context.sparkContext.clean(filterFunc))
  }

  /**
   * Return a new DStream in which each RDD is generated by applying glom() to each RDD of
   * this DStream. Applying glom() to an RDD coalesces all elements within each partition into
   * an array.
   */
  def glom(): DStream[Array[T]] = ssc.withScope {
    new GlommedDStream(this)
  }

  /**
   * Return a new DStream with an increased or decreased level of parallelism. Each RDD in the
   * returned DStream has exactly numPartitions partitions.
   */
  def repartition(numPartitions: Int): DStream[T] = ssc.withScope {
    this.transform(_.repartition(numPartitions))
  }

  /**
   * Return a new DStream in which each RDD is generated by applying mapPartitions() to each RDDs
   * of this DStream. Applying mapPartitions() to an RDD applies a function to each partition
   * of the RDD.
   */
  def mapPartitions[U: ClassTag](
      mapPartFunc: Iterator[T] => Iterator[U],
      preservePartitioning: Boolean = false
    ): DStream[U] = ssc.withScope {
    new MapPartitionedDStream(this, context.sparkContext.clean(mapPartFunc), preservePartitioning)
  }

  /**
   * Return a new DStream in which each RDD has a single element generated by reducing each RDD
   * of this DStream.
   */
  def reduce(reduceFunc: (T, T) => T): DStream[T] = ssc.withScope {
    this.map((null, _)).reduceByKey(reduceFunc, 1).map(_._2)
  }

  /**
   * Return a new DStream in which each RDD has a single element generated by counting each RDD
   * of this DStream.
   */
  def count(): DStream[Long] = ssc.withScope {
    this.map(_ => (null, 1L))
        .transform(_.union(context.sparkContext.makeRDD(Seq((null, 0L)), 1)))
        .reduceByKey(_ + _)
        .map(_._2)
  }

  /**
   * Return a new DStream in which each RDD contains the counts of each distinct value in
   * each RDD of this DStream. Hash partitioning is used to generate
   * the RDDs with `numPartitions` partitions (Spark's default number of partitions if
   * `numPartitions` not specified).
   */
  def countByValue(numPartitions: Int = ssc.sc.defaultParallelism)(implicit ord: Ordering[T] = null)
      : DStream[(T, Long)] = ssc.withScope {
    this.map((_, 1L)).reduceByKey((x: Long, y: Long) => x + y, numPartitions)
  }

  /**
   * Apply a function to each RDD in this DStream. This is an output operator, so
   * 'this' DStream will be registered as an output stream and therefore materialized.
   */
  def foreachRDD(foreachFunc: RDD[T] => Unit): Unit = ssc.withScope {
    val cleanedF = context.sparkContext.clean(foreachFunc, false)
    foreachRDD((r: RDD[T], _: Time) => cleanedF(r), displayInnerRDDOps = true)
  }

  /**
   * Apply a function to each RDD in this DStream. This is an output operator, so
   * 'this' DStream will be registered as an output stream and therefore materialized.
   */
  def foreachRDD(foreachFunc: (RDD[T], Time) => Unit): Unit = ssc.withScope {
    // because the DStream is reachable from the outer object here, and because
    // DStreams can't be serialized with closures, we can't proactively check
    // it for serializability and so we pass the optional false to SparkContext.clean
    foreachRDD(foreachFunc, displayInnerRDDOps = true)
  }

  /**
   * Apply a function to each RDD in this DStream. This is an output operator, so
   * 'this' DStream will be registered as an output stream and therefore materialized.
   * @param foreachFunc foreachRDD function
   * @param displayInnerRDDOps Whether the detailed callsites and scopes of the RDDs generated
   *                           in the `foreachFunc` to be displayed in the UI. If `false`, then
   *                           only the scopes and callsites of `foreachRDD` will override those
   *                           of the RDDs on the display.
   */
  private def foreachRDD(
      foreachFunc: (RDD[T], Time) => Unit,
      displayInnerRDDOps: Boolean): Unit = {
    new ForEachDStream(this,
      context.sparkContext.clean(foreachFunc, false), displayInnerRDDOps).register()
  }

  /**
   * Return a new DStream in which each RDD is generated by applying a function
   * on each RDD of 'this' DStream.
   */
  def transform[U: ClassTag](transformFunc: RDD[T] => RDD[U]): DStream[U] = ssc.withScope {
    // because the DStream is reachable from the outer object here, and because
    // DStreams can't be serialized with closures, we can't proactively check
    // it for serializability and so we pass the optional false to SparkContext.clean
    val cleanedF = context.sparkContext.clean(transformFunc, false)
    transform((r: RDD[T], _: Time) => cleanedF(r))
  }

  /**
   * Return a new DStream in which each RDD is generated by applying a function
   * on each RDD of 'this' DStream.
   */
  def transform[U: ClassTag](transformFunc: (RDD[T], Time) => RDD[U]): DStream[U] = ssc.withScope {
    // because the DStream is reachable from the outer object here, and because
    // DStreams can't be serialized with closures, we can't proactively check
    // it for serializability and so we pass the optional false to SparkContext.clean
    val cleanedF = context.sparkContext.clean(transformFunc, false)
    val realTransformFunc = (rdds: Seq[RDD[_]], time: Time) => {
      assert(rdds.length == 1)
      cleanedF(rdds.head.asInstanceOf[RDD[T]], time)
    }
    new TransformedDStream[U](Seq(this), realTransformFunc)
  }

  /**
   * Return a new DStream in which each RDD is generated by applying a function
   * on each RDD of 'this' DStream and 'other' DStream.
   */
  def transformWith[U: ClassTag, V: ClassTag](
      other: DStream[U], transformFunc: (RDD[T], RDD[U]) => RDD[V]
    ): DStream[V] = ssc.withScope {
    // because the DStream is reachable from the outer object here, and because
    // DStreams can't be serialized with closures, we can't proactively check
    // it for serializability and so we pass the optional false to SparkContext.clean
    val cleanedF = ssc.sparkContext.clean(transformFunc, false)
    transformWith(other, (rdd1: RDD[T], rdd2: RDD[U], time: Time) => cleanedF(rdd1, rdd2))
  }

  /**
   * Return a new DStream in which each RDD is generated by applying a function
   * on each RDD of 'this' DStream and 'other' DStream.
   */
  def transformWith[U: ClassTag, V: ClassTag](
      other: DStream[U], transformFunc: (RDD[T], RDD[U], Time) => RDD[V]
    ): DStream[V] = ssc.withScope {
    // because the DStream is reachable from the outer object here, and because
    // DStreams can't be serialized with closures, we can't proactively check
    // it for serializability and so we pass the optional false to SparkContext.clean
    val cleanedF = ssc.sparkContext.clean(transformFunc, false)
    val realTransformFunc = (rdds: Seq[RDD[_]], time: Time) => {
      assert(rdds.length == 2)
      val rdd1 = rdds(0).asInstanceOf[RDD[T]]
      val rdd2 = rdds(1).asInstanceOf[RDD[U]]
      cleanedF(rdd1, rdd2, time)
    }
    new TransformedDStream[V](Seq(this, other), realTransformFunc)
  }

  /**
   * Print the first ten elements of each RDD generated in this DStream. This is an output
   * operator, so this DStream will be registered as an output stream and there materialized.
   */
  def print(): Unit = ssc.withScope {
    print(10)
  }

  /**
   * Print the first num elements of each RDD generated in this DStream. This is an output
   * operator, so this DStream will be registered as an output stream and there materialized.
   */
  def print(num: Int): Unit = ssc.withScope {
    def foreachFunc: (RDD[T], Time) => Unit = {
      (rdd: RDD[T], time: Time) => {
        val firstNum = rdd.take(num + 1)
        // scalastyle:off println
        println("-------------------------------------------")
        println(s"Time: $time")
        println("-------------------------------------------")
        firstNum.take(num).foreach(println)
        if (firstNum.length > num) println("...")
        println()
        // scalastyle:on println
      }
    }
    foreachRDD(context.sparkContext.clean(foreachFunc), displayInnerRDDOps = false)
  }

  /**
   * Return a new DStream in which each RDD contains all the elements in seen in a
   * sliding window of time over this DStream. The new DStream generates RDDs with
   * the same interval as this DStream.
   * @param windowDuration width of the window; must be a multiple of this DStream's interval.
   */
  def window(windowDuration: Duration): DStream[T] = window(windowDuration, this.slideDuration)

  /**
   * Return a new DStream in which each RDD contains all the elements in seen in a
   * sliding window of time over this DStream.
   * @param windowDuration width of the window; must be a multiple of this DStream's
   *                       batching interval
   * @param slideDuration  sliding interval of the window (i.e., the interval after which
   *                       the new DStream will generate RDDs); must be a multiple of this
   *                       DStream's batching interval
   */
  def window(windowDuration: Duration, slideDuration: Duration): DStream[T] = ssc.withScope {
    new WindowedDStream(this, windowDuration, slideDuration)
  }

  /**
   * Return a new DStream in which each RDD has a single element generated by reducing all
   * elements in a sliding window over this DStream.
   * @param reduceFunc associative and commutative reduce function
   * @param windowDuration width of the window; must be a multiple of this DStream's
   *                       batching interval
   * @param slideDuration  sliding interval of the window (i.e., the interval after which
   *                       the new DStream will generate RDDs); must be a multiple of this
   *                       DStream's batching interval
   */
  def reduceByWindow(
      reduceFunc: (T, T) => T,
      windowDuration: Duration,
      slideDuration: Duration
    ): DStream[T] = ssc.withScope {
    this.reduce(reduceFunc).window(windowDuration, slideDuration).reduce(reduceFunc)
  }

  /**
   * Return a new DStream in which each RDD has a single element generated by reducing all
   * elements in a sliding window over this DStream. However, the reduction is done incrementally
   * using the old window's reduced value :
   *  1. reduce the new values that entered the window (e.g., adding new counts)
   *  2. "inverse reduce" the old values that left the window (e.g., subtracting old counts)
   *  This is more efficient than reduceByWindow without "inverse reduce" function.
   *  However, it is applicable to only "invertible reduce functions".
   * @param reduceFunc associative and commutative reduce function
   * @param invReduceFunc inverse reduce function; such that for all y, invertible x:
   *                      `invReduceFunc(reduceFunc(x, y), x) = y`
   * @param windowDuration width of the window; must be a multiple of this DStream's
   *                       batching interval
   * @param slideDuration  sliding interval of the window (i.e., the interval after which
   *                       the new DStream will generate RDDs); must be a multiple of this
   *                       DStream's batching interval
   */
  def reduceByWindow(
      reduceFunc: (T, T) => T,
      invReduceFunc: (T, T) => T,
      windowDuration: Duration,
      slideDuration: Duration
    ): DStream[T] = ssc.withScope {
      this.map((1, _))
          .reduceByKeyAndWindow(reduceFunc, invReduceFunc, windowDuration, slideDuration, 1)
          .map(_._2)
  }

  /**
   * Return a new DStream in which each RDD has a single element generated by counting the number
   * of elements in a sliding window over this DStream. Hash partitioning is used to generate
   * the RDDs with Spark's default number of partitions.
   * @param windowDuration width of the window; must be a multiple of this DStream's
   *                       batching interval
   * @param slideDuration  sliding interval of the window (i.e., the interval after which
   *                       the new DStream will generate RDDs); must be a multiple of this
   *                       DStream's batching interval
   */
  def countByWindow(
      windowDuration: Duration,
      slideDuration: Duration): DStream[Long] = ssc.withScope {
    this.map(_ => 1L).reduceByWindow(_ + _, _ - _, windowDuration, slideDuration)
  }

  /**
   * Return a new DStream in which each RDD contains the count of distinct elements in
   * RDDs in a sliding window over this DStream. Hash partitioning is used to generate
   * the RDDs with `numPartitions` partitions (Spark's default number of partitions if
   * `numPartitions` not specified).
   * @param windowDuration width of the window; must be a multiple of this DStream's
   *                       batching interval
   * @param slideDuration  sliding interval of the window (i.e., the interval after which
   *                       the new DStream will generate RDDs); must be a multiple of this
   *                       DStream's batching interval
   * @param numPartitions  number of partitions of each RDD in the new DStream.
   */
  def countByValueAndWindow(
      windowDuration: Duration,
      slideDuration: Duration,
      numPartitions: Int = ssc.sc.defaultParallelism)
      (implicit ord: Ordering[T] = null)
      : DStream[(T, Long)] = ssc.withScope {
    this.map((_, 1L)).reduceByKeyAndWindow(
      (x: Long, y: Long) => x + y,
      (x: Long, y: Long) => x - y,
      windowDuration,
      slideDuration,
      numPartitions,
      (x: (T, Long)) => x._2 != 0L
    )
  }

  /**
   * Return a new DStream by unifying data of another DStream with this DStream.
   * @param that Another DStream having the same slideDuration as this DStream.
   */
  def union(that: DStream[T]): DStream[T] = ssc.withScope {
    new UnionDStream[T](Array(this, that))
  }

  /**
   * Return all the RDDs defined by the Interval object (both end times included)
   */
  def slice(interval: Interval): Seq[RDD[T]] = ssc.withScope {
    slice(interval.beginTime, interval.endTime)
  }

  /**
   * Return all the RDDs between 'fromTime' to 'toTime' (both included)
   */
  def slice(fromTime: Time, toTime: Time): Seq[RDD[T]] = ssc.withScope {
    if (!isInitialized) {
      throw new SparkException(this + " has not been initialized")
    }

    val alignedToTime = if ((toTime - zeroTime).isMultipleOf(slideDuration)) {
      toTime
    } else {
      logWarning(s"toTime ($toTime) is not a multiple of slideDuration ($slideDuration)")
      toTime.floor(slideDuration, zeroTime)
    }

    val alignedFromTime = if ((fromTime - zeroTime).isMultipleOf(slideDuration)) {
      fromTime
    } else {
      logWarning(s"fromTime ($fromTime) is not a multiple of slideDuration ($slideDuration)")
      fromTime.floor(slideDuration, zeroTime)
    }

    logInfo(s"Slicing from $fromTime to $toTime" +
      s" (aligned to $alignedFromTime and $alignedToTime)")

    alignedFromTime.to(alignedToTime, slideDuration).flatMap { time =>
      if (time >= zeroTime) getOrCompute(time) else None
    }
  }

  /**
   * Save each RDD in this DStream as a Sequence file of serialized objects.
   * The file name at each batch interval is generated based on `prefix` and
   * `suffix`: "prefix-TIME_IN_MS.suffix".
   */
  def saveAsObjectFiles(prefix: String, suffix: String = ""): Unit = ssc.withScope {
    val saveFunc = (rdd: RDD[T], time: Time) => {
      val file = rddToFileName(prefix, suffix, time)
      rdd.saveAsObjectFile(file)
    }
    this.foreachRDD(saveFunc, displayInnerRDDOps = false)
  }

  /**
   * Save each RDD in this DStream as at text file, using string representation
   * of elements. The file name at each batch interval is generated based on
   * `prefix` and `suffix`: "prefix-TIME_IN_MS.suffix".
   */
  def saveAsTextFiles(prefix: String, suffix: String = ""): Unit = ssc.withScope {
    val saveFunc = (rdd: RDD[T], time: Time) => {
      val file = rddToFileName(prefix, suffix, time)
      rdd.saveAsTextFile(file)
    }
    this.foreachRDD(saveFunc, displayInnerRDDOps = false)
  }

  /**
   * Register this streaming as an output stream. This would ensure that RDDs of this
   * DStream will be generated.
   */
  private[streaming] def register(): DStream[T] = {
    ssc.graph.addOutputStream(this)
    this
  }
}

object DStream {

  private val SPARK_CLASS_REGEX = """^org\.apache\.spark""".r
  private val SPARK_STREAMING_TESTCLASS_REGEX = """^org\.apache\.spark\.streaming\.test""".r
  private val SPARK_EXAMPLES_CLASS_REGEX = """^org\.apache\.spark\.examples""".r
  private val SCALA_CLASS_REGEX = """^scala""".r

  // `toPairDStreamFunctions` was in SparkContext before 1.3 and users had to
  // `import StreamingContext._` to enable it. Now we move it here to make the compiler find
  // it automatically. However, we still keep the old function in StreamingContext for backward
  // compatibility and forward to the following function directly.

  implicit def toPairDStreamFunctions[K, V](stream: DStream[(K, V)])
      (implicit kt: ClassTag[K], vt: ClassTag[V], ord: Ordering[K] = null):
    PairDStreamFunctions[K, V] = {
    new PairDStreamFunctions[K, V](stream)
  }

  /** Get the creation site of a DStream from the stack trace of when the DStream is created. */
  private[streaming] def getCreationSite(): CallSite = {
    /** Filtering function that excludes non-user classes for a streaming application */
    def streamingExclusionFunction(className: String): Boolean = {
      def doesMatch(r: Regex): Boolean = r.findFirstIn(className).isDefined
      val isSparkClass = doesMatch(SPARK_CLASS_REGEX)
      val isSparkExampleClass = doesMatch(SPARK_EXAMPLES_CLASS_REGEX)
      val isSparkStreamingTestClass = doesMatch(SPARK_STREAMING_TESTCLASS_REGEX)
      val isScalaClass = doesMatch(SCALA_CLASS_REGEX)

      // If the class is a spark example class or a streaming test class then it is considered
      // as a streaming application class and don't exclude. Otherwise, exclude any
      // non-Spark and non-Scala class, as the rest would streaming application classes.
      (isSparkClass || isScalaClass) && !isSparkExampleClass && !isSparkStreamingTestClass
    }
    org.apache.spark.util.Utils.getCallSite(streamingExclusionFunction)
  }
}

相关信息

spark 源码目录

相关文章

spark ConstantInputDStream 源码

spark DStreamCheckpointData 源码

spark FileInputDStream 源码

spark FilteredDStream 源码

spark FlatMapValuedDStream 源码

spark FlatMappedDStream 源码

spark ForEachDStream 源码

spark GlommedDStream 源码

spark InputDStream 源码

spark MapPartitionedDStream 源码

0  赞