kafka TimestampRecordProcessor 源码

  • 2022-10-20
  • 浏览 (518)

kafka TimestampRecordProcessor 代码

文件路径:/trogdor/src/main/java/org/apache/kafka/trogdor/workload/TimestampRecordProcessor.java

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements. See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License. You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.kafka.trogdor.workload;

import com.fasterxml.jackson.annotation.JsonCreator;
import com.fasterxml.jackson.annotation.JsonProperty;
import com.fasterxml.jackson.databind.JsonNode;
import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.kafka.clients.consumer.ConsumerRecords;
import org.apache.kafka.trogdor.common.JsonUtil;
import org.apache.kafka.common.utils.Time;

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

import java.nio.ByteBuffer;
import java.nio.ByteOrder;

/**
 * This class will process records containing timestamps and generate a histogram based on the data.  It will then be
 * present in the status from the `ConsumeBenchWorker` class.  This must be used with a timestamped PayloadGenerator
 * implementation.
 *
 * Example spec:
 * {
 *    "type": "timestamp",
 *    "histogramMaxMs": 10000,
 *    "histogramMinMs": 0,
 *    "histogramStepMs": 1
 * }
 *
 * This will track total E2E latency up to 10 seconds, using 1ms resolution and a timestamp size of 8 bytes.
 */

public class TimestampRecordProcessor implements RecordProcessor {
    private final int histogramMaxMs;
    private final int histogramMinMs;
    private final int histogramStepMs;
    private final ByteBuffer buffer;
    private final Histogram histogram;

    private final Logger log = LoggerFactory.getLogger(TimestampRecordProcessor.class);

    final static float[] PERCENTILES = {0.5f, 0.95f, 0.99f};

    @JsonCreator
    public TimestampRecordProcessor(@JsonProperty("histogramMaxMs") int histogramMaxMs,
                                    @JsonProperty("histogramMinMs") int histogramMinMs,
                                    @JsonProperty("histogramStepMs") int histogramStepMs) {
        this.histogramMaxMs = histogramMaxMs;
        this.histogramMinMs = histogramMinMs;
        this.histogramStepMs = histogramStepMs;
        this.histogram = new Histogram((histogramMaxMs - histogramMinMs) / histogramStepMs);
        buffer = ByteBuffer.allocate(Long.BYTES);
        buffer.order(ByteOrder.LITTLE_ENDIAN);
    }

    @JsonProperty
    public int histogramMaxMs() {
        return histogramMaxMs;
    }

    @JsonProperty
    public int histogramMinMs() {
        return histogramMinMs;
    }

    @JsonProperty
    public int histogramStepMs() {
        return histogramStepMs;
    }

    private void putHistogram(long latency) {
        histogram.add(Long.max(0L, (latency - histogramMinMs) / histogramStepMs));
    }

    @Override
    public synchronized void processRecords(ConsumerRecords<byte[], byte[]> consumerRecords) {
        // Save the current time to prevent skew by processing time.
        long curTime = Time.SYSTEM.milliseconds();
        for (ConsumerRecord<byte[], byte[]> record : consumerRecords) {
            try {
                buffer.clear();
                buffer.put(record.value(), 0, Long.BYTES);
                buffer.rewind();
                putHistogram(curTime - buffer.getLong());
            } catch (RuntimeException e) {
                log.error("Error in processRecords:", e);
            }
        }
    }

    @Override
    public JsonNode processorStatus() {
        Histogram.Summary summary = histogram.summarize(PERCENTILES);
        StatusData statusData = new StatusData(
                summary.average() * histogramStepMs + histogramMinMs,
                summary.percentiles().get(0).value() * histogramStepMs + histogramMinMs,
                summary.percentiles().get(1).value() * histogramStepMs + histogramMinMs,
                summary.percentiles().get(2).value() * histogramStepMs + histogramMinMs);
        return JsonUtil.JSON_SERDE.valueToTree(statusData);
    }

    private static class StatusData {
        private final float averageLatencyMs;
        private final int p50LatencyMs;
        private final int p95LatencyMs;
        private final int p99LatencyMs;

        /**
         * The percentiles to use when calculating the histogram data.
         * These should match up with the p50LatencyMs, p95LatencyMs, etc. fields.
         */
        final static float[] PERCENTILES = {0.5f, 0.95f, 0.99f};

        @JsonCreator
        StatusData(@JsonProperty("averageLatencyMs") float averageLatencyMs,
                   @JsonProperty("p50LatencyMs") int p50latencyMs,
                   @JsonProperty("p95LatencyMs") int p95latencyMs,
                   @JsonProperty("p99LatencyMs") int p99latencyMs) {
            this.averageLatencyMs = averageLatencyMs;
            this.p50LatencyMs = p50latencyMs;
            this.p95LatencyMs = p95latencyMs;
            this.p99LatencyMs = p99latencyMs;
        }

        @JsonProperty
        public float averageLatencyMs() {
            return averageLatencyMs;
        }

        @JsonProperty
        public int p50LatencyMs() {
            return p50LatencyMs;
        }

        @JsonProperty
        public int p95LatencyMs() {
            return p95LatencyMs;
        }

        @JsonProperty
        public int p99LatencyMs() {
            return p99LatencyMs;
        }
    }
}

相关信息

kafka 源码目录

相关文章

kafka ConfigurableProducerSpec 源码

kafka ConfigurableProducerWorker 源码

kafka ConnectionStressSpec 源码

kafka ConnectionStressWorker 源码

kafka ConstantFlushGenerator 源码

kafka ConstantPayloadGenerator 源码

kafka ConstantThroughputGenerator 源码

kafka ConsumeBenchSpec 源码

kafka ConsumeBenchWorker 源码

kafka ExternalCommandSpec 源码

0  赞