spark HadoopMapReduceCommitProtocol 源码

  • 2022-10-20
  • 浏览 (274)

spark HadoopMapReduceCommitProtocol 代码

文件路径:/core/src/main/scala/org/apache/spark/internal/io/HadoopMapReduceCommitProtocol.scala

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.spark.internal.io

import java.io.IOException
import java.util.{Date, UUID}

import scala.collection.mutable
import scala.util.Try

import org.apache.hadoop.conf.Configurable
import org.apache.hadoop.fs.Path
import org.apache.hadoop.mapreduce._
import org.apache.hadoop.mapreduce.lib.output.FileOutputCommitter
import org.apache.hadoop.mapreduce.task.TaskAttemptContextImpl

import org.apache.spark.internal.Logging
import org.apache.spark.mapred.SparkHadoopMapRedUtil

/**
 * An [[FileCommitProtocol]] implementation backed by an underlying Hadoop OutputCommitter
 * (from the newer mapreduce API, not the old mapred API).
 *
 * Unlike Hadoop's OutputCommitter, this implementation is serializable.
 *
 * @param jobId the job's or stage's id
 * @param path the job's output path, or null if committer acts as a noop
 * @param dynamicPartitionOverwrite If true, Spark will overwrite partition directories at runtime
 *                                  dynamically. Suppose final path is /path/to/outputPath, output
 *                                  path of [[FileOutputCommitter]] is an intermediate path, e.g.
 *                                  /path/to/outputPath/.spark-staging-{jobId}, which is a staging
 *                                  directory. Task attempts firstly write files under the
 *                                  intermediate path, e.g.
 *                                  /path/to/outputPath/.spark-staging-{jobId}/_temporary/
 *                                  {appAttemptId}/_temporary/{taskAttemptId}/a=1/b=1/xxx.parquet.
 *
 *                                  1. When [[FileOutputCommitter]] algorithm version set to 1,
 *                                  we firstly move task attempt output files to
 *                                  /path/to/outputPath/.spark-staging-{jobId}/_temporary/
 *                                  {appAttemptId}/{taskId}/a=1/b=1,
 *                                  then move them to
 *                                  /path/to/outputPath/.spark-staging-{jobId}/a=1/b=1.
 *                                  2. When [[FileOutputCommitter]] algorithm version set to 2,
 *                                  committing tasks directly move task attempt output files to
 *                                  /path/to/outputPath/.spark-staging-{jobId}/a=1/b=1.
 *
 *                                  At the end of committing job, we move output files from
 *                                  intermediate path to final path, e.g., move files from
 *                                  /path/to/outputPath/.spark-staging-{jobId}/a=1/b=1
 *                                  to /path/to/outputPath/a=1/b=1
 */
class HadoopMapReduceCommitProtocol(
    jobId: String,
    path: String,
    dynamicPartitionOverwrite: Boolean = false)
  extends FileCommitProtocol with Serializable with Logging {

  import FileCommitProtocol._

  /** OutputCommitter from Hadoop is not serializable so marking it transient. */
  @transient private var committer: OutputCommitter = _

  /**
   * Checks whether there are files to be committed to a valid output location.
   *
   * As committing and aborting a job occurs on driver, where `addedAbsPathFiles` is always null,
   * it is necessary to check whether a valid output path is specified.
   * [[HadoopMapReduceCommitProtocol#path]] need not be a valid [[org.apache.hadoop.fs.Path]] for
   * committers not writing to distributed file systems.
   */
  private val hasValidPath = Try { new Path(path) }.isSuccess

  /**
   * Tracks files staged by this task for absolute output paths. These outputs are not managed by
   * the Hadoop OutputCommitter, so we must move these to their final locations on job commit.
   *
   * The mapping is from the temp output path to the final desired output path of the file.
   */
  @transient private var addedAbsPathFiles: mutable.Map[String, String] = null

  /**
   * Tracks partitions with default path that have new files written into them by this task,
   * e.g. a=1/b=2. Files under these partitions will be saved into staging directory and moved to
   * destination directory at the end, if `dynamicPartitionOverwrite` is true.
   */
  @transient private var partitionPaths: mutable.Set[String] = null

  /**
   * The staging directory of this write job. Spark uses it to deal with files with absolute output
   * path, or writing data into partitioned directory with dynamicPartitionOverwrite=true.
   */
  @transient protected lazy val stagingDir = getStagingDir(path, jobId)

  protected def setupCommitter(context: TaskAttemptContext): OutputCommitter = {
    val format = context.getOutputFormatClass.getConstructor().newInstance()
    // If OutputFormat is Configurable, we should set conf to it.
    format match {
      case c: Configurable => c.setConf(context.getConfiguration)
      case _ => ()
    }
    format.getOutputCommitter(context)
  }

  override def newTaskTempFile(
      taskContext: TaskAttemptContext, dir: Option[String], ext: String): String = {
    newTaskTempFile(taskContext, dir, FileNameSpec("", ext))
  }

  override def newTaskTempFile(
      taskContext: TaskAttemptContext, dir: Option[String], spec: FileNameSpec): String = {
    val filename = getFilename(taskContext, spec)

    val stagingDir: Path = committer match {
      // For FileOutputCommitter it has its own staging path called "work path".
      case f: FileOutputCommitter =>
        if (dynamicPartitionOverwrite) {
          assert(dir.isDefined,
            "The dataset to be written must be partitioned when dynamicPartitionOverwrite is true.")
          partitionPaths += dir.get
        }
        new Path(Option(f.getWorkPath).map(_.toString).getOrElse(path))
      case _ => new Path(path)
    }

    dir.map { d =>
      new Path(new Path(stagingDir, d), filename).toString
    }.getOrElse {
      new Path(stagingDir, filename).toString
    }
  }

  override def newTaskTempFileAbsPath(
      taskContext: TaskAttemptContext, absoluteDir: String, ext: String): String = {
    newTaskTempFileAbsPath(taskContext, absoluteDir, FileNameSpec("", ext))
  }

  override def newTaskTempFileAbsPath(
      taskContext: TaskAttemptContext, absoluteDir: String, spec: FileNameSpec): String = {
    val filename = getFilename(taskContext, spec)
    val absOutputPath = new Path(absoluteDir, filename).toString

    // Include a UUID here to prevent file collisions for one task writing to different dirs.
    // In principle we could include hash(absoluteDir) instead but this is simpler.
    val tmpOutputPath = new Path(stagingDir, UUID.randomUUID().toString() + "-" + filename).toString

    addedAbsPathFiles(tmpOutputPath) = absOutputPath
    tmpOutputPath
  }

  protected def getFilename(taskContext: TaskAttemptContext, spec: FileNameSpec): String = {
    // The file name looks like part-00000-2dd664f9-d2c4-4ffe-878f-c6c70c1fb0cb_00003-c000.parquet
    // Note that %05d does not truncate the split number, so if we have more than 100000 tasks,
    // the file name is fine and won't overflow.
    val split = taskContext.getTaskAttemptID.getTaskID.getId
    f"${spec.prefix}part-$split%05d-$jobId${spec.suffix}"
  }

  override def setupJob(jobContext: JobContext): Unit = {
    // Setup IDs
    val jobId = SparkHadoopWriterUtils.createJobID(new Date, 0)
    val taskId = new TaskID(jobId, TaskType.MAP, 0)
    val taskAttemptId = new TaskAttemptID(taskId, 0)

    // Set up the configuration object
    jobContext.getConfiguration.set("mapreduce.job.id", jobId.toString)
    jobContext.getConfiguration.set("mapreduce.task.id", taskAttemptId.getTaskID.toString)
    jobContext.getConfiguration.set("mapreduce.task.attempt.id", taskAttemptId.toString)
    jobContext.getConfiguration.setBoolean("mapreduce.task.ismap", true)
    jobContext.getConfiguration.setInt("mapreduce.task.partition", 0)

    val taskAttemptContext = new TaskAttemptContextImpl(jobContext.getConfiguration, taskAttemptId)
    committer = setupCommitter(taskAttemptContext)
    committer.setupJob(jobContext)
  }

  override def commitJob(jobContext: JobContext, taskCommits: Seq[TaskCommitMessage]): Unit = {
    committer.commitJob(jobContext)

    if (hasValidPath) {
      val (allAbsPathFiles, allPartitionPaths) =
        taskCommits.map(_.obj.asInstanceOf[(Map[String, String], Set[String])]).unzip
      val fs = stagingDir.getFileSystem(jobContext.getConfiguration)

      val filesToMove = allAbsPathFiles.foldLeft(Map[String, String]())(_ ++ _)
      logDebug(s"Committing files staged for absolute locations $filesToMove")
      val absParentPaths = filesToMove.values.map(new Path(_).getParent).toSet
      if (dynamicPartitionOverwrite) {
        logDebug(s"Clean up absolute partition directories for overwriting: $absParentPaths")
        absParentPaths.foreach(fs.delete(_, true))
      }
      logDebug(s"Create absolute parent directories: $absParentPaths")
      absParentPaths.foreach(fs.mkdirs)
      for ((src, dst) <- filesToMove) {
        if (!fs.rename(new Path(src), new Path(dst))) {
          throw new IOException(s"Failed to rename $src to $dst when committing files staged for " +
            s"absolute locations")
        }
      }

      if (dynamicPartitionOverwrite) {
        val partitionPaths = allPartitionPaths.foldLeft(Set[String]())(_ ++ _)
        logDebug(s"Clean up default partition directories for overwriting: $partitionPaths")
        for (part <- partitionPaths) {
          val finalPartPath = new Path(path, part)
          if (!fs.delete(finalPartPath, true) && !fs.exists(finalPartPath.getParent)) {
            // According to the official hadoop FileSystem API spec, delete op should assume
            // the destination is no longer present regardless of return value, thus we do not
            // need to double check if finalPartPath exists before rename.
            // Also in our case, based on the spec, delete returns false only when finalPartPath
            // does not exist. When this happens, we need to take action if parent of finalPartPath
            // also does not exist(e.g. the scenario described on SPARK-23815), because
            // FileSystem API spec on rename op says the rename dest(finalPartPath) must have
            // a parent that exists, otherwise we may get unexpected result on the rename.
            fs.mkdirs(finalPartPath.getParent)
          }
          val stagingPartPath = new Path(stagingDir, part)
          if (!fs.rename(stagingPartPath, finalPartPath)) {
            throw new IOException(s"Failed to rename $stagingPartPath to $finalPartPath when " +
              s"committing files staged for overwriting dynamic partitions")
          }
        }
      }

      fs.delete(stagingDir, true)
    }
  }

  /**
   * Abort the job; log and ignore any IO exception thrown.
   * This is invariably invoked in an exception handler; raising
   * an exception here will lose the root cause of the failure.
   *
   * @param jobContext job context
   */
  override def abortJob(jobContext: JobContext): Unit = {
    try {
      committer.abortJob(jobContext, JobStatus.State.FAILED)
    } catch {
      case e: IOException =>
        logWarning(s"Exception while aborting ${jobContext.getJobID}", e)
    }
    try {
      if (hasValidPath) {
        val fs = stagingDir.getFileSystem(jobContext.getConfiguration)
        fs.delete(stagingDir, true)
      }
    } catch {
      case e: IOException =>
        logWarning(s"Exception while aborting ${jobContext.getJobID}", e)
    }
  }

  override def setupTask(taskContext: TaskAttemptContext): Unit = {
    committer = setupCommitter(taskContext)
    committer.setupTask(taskContext)
    addedAbsPathFiles = mutable.Map[String, String]()
    partitionPaths = mutable.Set[String]()
  }

  override def commitTask(taskContext: TaskAttemptContext): TaskCommitMessage = {
    val attemptId = taskContext.getTaskAttemptID
    logTrace(s"Commit task ${attemptId}")
    SparkHadoopMapRedUtil.commitTask(
      committer, taskContext, attemptId.getJobID.getId, attemptId.getTaskID.getId)
    new TaskCommitMessage(addedAbsPathFiles.toMap -> partitionPaths.toSet)
  }

  /**
   * Abort the task; log and ignore any failure thrown.
   * This is invariably invoked in an exception handler; raising
   * an exception here will lose the root cause of the failure.
   *
   * @param taskContext context
   */
  override def abortTask(taskContext: TaskAttemptContext): Unit = {
    try {
      committer.abortTask(taskContext)
    } catch {
      case e: IOException =>
        logWarning(s"Exception while aborting ${taskContext.getTaskAttemptID}", e)
    }
    // best effort cleanup of other staged files
    try {
      for ((src, _) <- addedAbsPathFiles) {
        val tmp = new Path(src)
        tmp.getFileSystem(taskContext.getConfiguration).delete(tmp, false)
      }
    } catch {
      case e: IOException =>
        logWarning(s"Exception while aborting ${taskContext.getTaskAttemptID}", e)
    }
  }
}

相关信息

spark 源码目录

相关文章

spark FileCommitProtocol 源码

spark HadoopMapRedCommitProtocol 源码

spark HadoopWriteConfigUtil 源码

spark SparkHadoopWriter 源码

spark SparkHadoopWriterUtils 源码

0  赞