spark UnsafeShuffleWriter 源码
spark UnsafeShuffleWriter 代码
文件路径:/core/src/main/java/org/apache/spark/shuffle/sort/UnsafeShuffleWriter.java
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.spark.shuffle.sort;
import java.nio.channels.Channels;
import java.util.Arrays;
import java.util.Optional;
import javax.annotation.Nullable;
import java.io.*;
import java.nio.channels.FileChannel;
import java.nio.channels.WritableByteChannel;
import java.util.Iterator;
import scala.Option;
import scala.Product2;
import scala.collection.JavaConverters;
import scala.reflect.ClassTag;
import scala.reflect.ClassTag$;
import com.google.common.annotations.VisibleForTesting;
import com.google.common.io.ByteStreams;
import com.google.common.io.Closeables;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.apache.spark.*;
import org.apache.spark.annotation.Private;
import org.apache.spark.internal.config.package$;
import org.apache.spark.io.CompressionCodec;
import org.apache.spark.io.CompressionCodec$;
import org.apache.spark.io.NioBufferedFileInputStream;
import org.apache.spark.memory.TaskMemoryManager;
import org.apache.spark.network.shuffle.checksum.ShuffleChecksumHelper;
import org.apache.spark.network.util.LimitedInputStream;
import org.apache.spark.scheduler.MapStatus;
import org.apache.spark.scheduler.MapStatus$;
import org.apache.spark.shuffle.ShuffleWriteMetricsReporter;
import org.apache.spark.serializer.SerializationStream;
import org.apache.spark.serializer.SerializerInstance;
import org.apache.spark.shuffle.ShuffleWriter;
import org.apache.spark.shuffle.api.ShuffleExecutorComponents;
import org.apache.spark.shuffle.api.ShuffleMapOutputWriter;
import org.apache.spark.shuffle.api.ShufflePartitionWriter;
import org.apache.spark.shuffle.api.SingleSpillShuffleMapOutputWriter;
import org.apache.spark.shuffle.api.WritableByteChannelWrapper;
import org.apache.spark.storage.BlockManager;
import org.apache.spark.storage.TimeTrackingOutputStream;
import org.apache.spark.unsafe.Platform;
import org.apache.spark.util.Utils;
@Private
public class UnsafeShuffleWriter<K, V> extends ShuffleWriter<K, V> {
private static final Logger logger = LoggerFactory.getLogger(UnsafeShuffleWriter.class);
private static final ClassTag<Object> OBJECT_CLASS_TAG = ClassTag$.MODULE$.Object();
@VisibleForTesting
static final int DEFAULT_INITIAL_SER_BUFFER_SIZE = 1024 * 1024;
private final BlockManager blockManager;
private final TaskMemoryManager memoryManager;
private final SerializerInstance serializer;
private final Partitioner partitioner;
private final ShuffleWriteMetricsReporter writeMetrics;
private final ShuffleExecutorComponents shuffleExecutorComponents;
private final int shuffleId;
private final long mapId;
private final TaskContext taskContext;
private final SparkConf sparkConf;
private final boolean transferToEnabled;
private final int initialSortBufferSize;
private final int inputBufferSizeInBytes;
@Nullable private MapStatus mapStatus;
@Nullable private ShuffleExternalSorter sorter;
@Nullable private long[] partitionLengths;
private long peakMemoryUsedBytes = 0;
/** Subclass of ByteArrayOutputStream that exposes `buf` directly. */
private static final class MyByteArrayOutputStream extends ByteArrayOutputStream {
MyByteArrayOutputStream(int size) { super(size); }
public byte[] getBuf() { return buf; }
}
private MyByteArrayOutputStream serBuffer;
private SerializationStream serOutputStream;
/**
* Are we in the process of stopping? Because map tasks can call stop() with success = true
* and then call stop() with success = false if they get an exception, we want to make sure
* we don't try deleting files, etc twice.
*/
private boolean stopping = false;
public UnsafeShuffleWriter(
BlockManager blockManager,
TaskMemoryManager memoryManager,
SerializedShuffleHandle<K, V> handle,
long mapId,
TaskContext taskContext,
SparkConf sparkConf,
ShuffleWriteMetricsReporter writeMetrics,
ShuffleExecutorComponents shuffleExecutorComponents) throws SparkException {
final int numPartitions = handle.dependency().partitioner().numPartitions();
if (numPartitions > SortShuffleManager.MAX_SHUFFLE_OUTPUT_PARTITIONS_FOR_SERIALIZED_MODE()) {
throw new IllegalArgumentException(
"UnsafeShuffleWriter can only be used for shuffles with at most " +
SortShuffleManager.MAX_SHUFFLE_OUTPUT_PARTITIONS_FOR_SERIALIZED_MODE() +
" reduce partitions");
}
this.blockManager = blockManager;
this.memoryManager = memoryManager;
this.mapId = mapId;
final ShuffleDependency<K, V, V> dep = handle.dependency();
this.shuffleId = dep.shuffleId();
this.serializer = dep.serializer().newInstance();
this.partitioner = dep.partitioner();
this.writeMetrics = writeMetrics;
this.shuffleExecutorComponents = shuffleExecutorComponents;
this.taskContext = taskContext;
this.sparkConf = sparkConf;
this.transferToEnabled = (boolean) sparkConf.get(package$.MODULE$.SHUFFLE_MERGE_PREFER_NIO());
this.initialSortBufferSize =
(int) (long) sparkConf.get(package$.MODULE$.SHUFFLE_SORT_INIT_BUFFER_SIZE());
this.inputBufferSizeInBytes =
(int) (long) sparkConf.get(package$.MODULE$.SHUFFLE_FILE_BUFFER_SIZE()) * 1024;
open();
}
private void updatePeakMemoryUsed() {
// sorter can be null if this writer is closed
if (sorter != null) {
long mem = sorter.getPeakMemoryUsedBytes();
if (mem > peakMemoryUsedBytes) {
peakMemoryUsedBytes = mem;
}
}
}
/**
* Return the peak memory used so far, in bytes.
*/
public long getPeakMemoryUsedBytes() {
updatePeakMemoryUsed();
return peakMemoryUsedBytes;
}
/**
* This convenience method should only be called in test code.
*/
@VisibleForTesting
public void write(Iterator<Product2<K, V>> records) throws IOException {
write(JavaConverters.asScalaIteratorConverter(records).asScala());
}
@Override
public void write(scala.collection.Iterator<Product2<K, V>> records) throws IOException {
// Keep track of success so we know if we encountered an exception
// We do this rather than a standard try/catch/re-throw to handle
// generic throwables.
boolean success = false;
try {
while (records.hasNext()) {
insertRecordIntoSorter(records.next());
}
closeAndWriteOutput();
success = true;
} finally {
if (sorter != null) {
try {
sorter.cleanupResources();
} catch (Exception e) {
// Only throw this error if we won't be masking another
// error.
if (success) {
throw e;
} else {
logger.error("In addition to a failure during writing, we failed during " +
"cleanup.", e);
}
}
}
}
}
private void open() throws SparkException {
assert (sorter == null);
sorter = new ShuffleExternalSorter(
memoryManager,
blockManager,
taskContext,
initialSortBufferSize,
partitioner.numPartitions(),
sparkConf,
writeMetrics);
serBuffer = new MyByteArrayOutputStream(DEFAULT_INITIAL_SER_BUFFER_SIZE);
serOutputStream = serializer.serializeStream(serBuffer);
}
@VisibleForTesting
void closeAndWriteOutput() throws IOException {
assert(sorter != null);
updatePeakMemoryUsed();
serBuffer = null;
serOutputStream = null;
final SpillInfo[] spills = sorter.closeAndGetSpills();
try {
partitionLengths = mergeSpills(spills);
} finally {
sorter = null;
for (SpillInfo spill : spills) {
if (spill.file.exists() && !spill.file.delete()) {
logger.error("Error while deleting spill file {}", spill.file.getPath());
}
}
}
mapStatus = MapStatus$.MODULE$.apply(
blockManager.shuffleServerId(), partitionLengths, mapId);
}
@VisibleForTesting
void insertRecordIntoSorter(Product2<K, V> record) throws IOException {
assert(sorter != null);
final K key = record._1();
final int partitionId = partitioner.getPartition(key);
serBuffer.reset();
serOutputStream.writeKey(key, OBJECT_CLASS_TAG);
serOutputStream.writeValue(record._2(), OBJECT_CLASS_TAG);
serOutputStream.flush();
final int serializedRecordSize = serBuffer.size();
assert (serializedRecordSize > 0);
sorter.insertRecord(
serBuffer.getBuf(), Platform.BYTE_ARRAY_OFFSET, serializedRecordSize, partitionId);
}
@VisibleForTesting
void forceSorterToSpill() throws IOException {
assert (sorter != null);
sorter.spill();
}
/**
* Merge zero or more spill files together, choosing the fastest merging strategy based on the
* number of spills and the IO compression codec.
*
* @return the partition lengths in the merged file.
*/
private long[] mergeSpills(SpillInfo[] spills) throws IOException {
long[] partitionLengths;
if (spills.length == 0) {
final ShuffleMapOutputWriter mapWriter = shuffleExecutorComponents
.createMapOutputWriter(shuffleId, mapId, partitioner.numPartitions());
return mapWriter.commitAllPartitions(
ShuffleChecksumHelper.EMPTY_CHECKSUM_VALUE).getPartitionLengths();
} else if (spills.length == 1) {
Optional<SingleSpillShuffleMapOutputWriter> maybeSingleFileWriter =
shuffleExecutorComponents.createSingleFileMapOutputWriter(shuffleId, mapId);
if (maybeSingleFileWriter.isPresent()) {
// Here, we don't need to perform any metrics updates because the bytes written to this
// output file would have already been counted as shuffle bytes written.
partitionLengths = spills[0].partitionLengths;
logger.debug("Merge shuffle spills for mapId {} with length {}", mapId,
partitionLengths.length);
maybeSingleFileWriter.get()
.transferMapSpillFile(spills[0].file, partitionLengths, sorter.getChecksums());
} else {
partitionLengths = mergeSpillsUsingStandardWriter(spills);
}
} else {
partitionLengths = mergeSpillsUsingStandardWriter(spills);
}
return partitionLengths;
}
private long[] mergeSpillsUsingStandardWriter(SpillInfo[] spills) throws IOException {
long[] partitionLengths;
final boolean compressionEnabled = (boolean) sparkConf.get(package$.MODULE$.SHUFFLE_COMPRESS());
final CompressionCodec compressionCodec = CompressionCodec$.MODULE$.createCodec(sparkConf);
final boolean fastMergeEnabled =
(boolean) sparkConf.get(package$.MODULE$.SHUFFLE_UNSAFE_FAST_MERGE_ENABLE());
final boolean fastMergeIsSupported = !compressionEnabled ||
CompressionCodec$.MODULE$.supportsConcatenationOfSerializedStreams(compressionCodec);
final boolean encryptionEnabled = blockManager.serializerManager().encryptionEnabled();
final ShuffleMapOutputWriter mapWriter = shuffleExecutorComponents
.createMapOutputWriter(shuffleId, mapId, partitioner.numPartitions());
try {
// There are multiple spills to merge, so none of these spill files' lengths were counted
// towards our shuffle write count or shuffle write time. If we use the slow merge path,
// then the final output file's size won't necessarily be equal to the sum of the spill
// files' sizes. To guard against this case, we look at the output file's actual size when
// computing shuffle bytes written.
//
// We allow the individual merge methods to report their own IO times since different merge
// strategies use different IO techniques. We count IO during merge towards the shuffle
// write time, which appears to be consistent with the "not bypassing merge-sort" branch in
// ExternalSorter.
if (fastMergeEnabled && fastMergeIsSupported) {
// Compression is disabled or we are using an IO compression codec that supports
// decompression of concatenated compressed streams, so we can perform a fast spill merge
// that doesn't need to interpret the spilled bytes.
if (transferToEnabled && !encryptionEnabled) {
logger.debug("Using transferTo-based fast merge");
mergeSpillsWithTransferTo(spills, mapWriter);
} else {
logger.debug("Using fileStream-based fast merge");
mergeSpillsWithFileStream(spills, mapWriter, null);
}
} else {
logger.debug("Using slow merge");
mergeSpillsWithFileStream(spills, mapWriter, compressionCodec);
}
// When closing an UnsafeShuffleExternalSorter that has already spilled once but also has
// in-memory records, we write out the in-memory records to a file but do not count that
// final write as bytes spilled (instead, it's accounted as shuffle write). The merge needs
// to be counted as shuffle write, but this will lead to double-counting of the final
// SpillInfo's bytes.
writeMetrics.decBytesWritten(spills[spills.length - 1].file.length());
partitionLengths = mapWriter.commitAllPartitions(sorter.getChecksums()).getPartitionLengths();
} catch (Exception e) {
try {
mapWriter.abort(e);
} catch (Exception e2) {
logger.warn("Failed to abort writing the map output.", e2);
e.addSuppressed(e2);
}
throw e;
}
return partitionLengths;
}
/**
* Merges spill files using Java FileStreams. This code path is typically slower than
* the NIO-based merge, {@link UnsafeShuffleWriter#mergeSpillsWithTransferTo(SpillInfo[],
* ShuffleMapOutputWriter)}, and it's mostly used in cases where the IO compression codec
* does not support concatenation of compressed data, when encryption is enabled, or when
* users have explicitly disabled use of {@code transferTo} in order to work around kernel bugs.
* This code path might also be faster in cases where individual partition size in a spill
* is small and UnsafeShuffleWriter#mergeSpillsWithTransferTo method performs many small
* disk ios which is inefficient. In those case, Using large buffers for input and output
* files helps reducing the number of disk ios, making the file merging faster.
*
* @param spills the spills to merge.
* @param mapWriter the map output writer to use for output.
* @param compressionCodec the IO compression codec, or null if shuffle compression is disabled.
* @return the partition lengths in the merged file.
*/
private void mergeSpillsWithFileStream(
SpillInfo[] spills,
ShuffleMapOutputWriter mapWriter,
@Nullable CompressionCodec compressionCodec) throws IOException {
logger.debug("Merge shuffle spills with FileStream for mapId {}", mapId);
final int numPartitions = partitioner.numPartitions();
final InputStream[] spillInputStreams = new InputStream[spills.length];
boolean threwException = true;
try {
for (int i = 0; i < spills.length; i++) {
spillInputStreams[i] = new NioBufferedFileInputStream(
spills[i].file,
inputBufferSizeInBytes);
// Only convert the partitionLengths when debug level is enabled.
if (logger.isDebugEnabled()) {
logger.debug("Partition lengths for mapId {} in Spill {}: {}", mapId, i,
Arrays.toString(spills[i].partitionLengths));
}
}
for (int partition = 0; partition < numPartitions; partition++) {
boolean copyThrewException = true;
ShufflePartitionWriter writer = mapWriter.getPartitionWriter(partition);
OutputStream partitionOutput = writer.openStream();
try {
partitionOutput = new TimeTrackingOutputStream(writeMetrics, partitionOutput);
partitionOutput = blockManager.serializerManager().wrapForEncryption(partitionOutput);
if (compressionCodec != null) {
partitionOutput = compressionCodec.compressedOutputStream(partitionOutput);
}
for (int i = 0; i < spills.length; i++) {
final long partitionLengthInSpill = spills[i].partitionLengths[partition];
if (partitionLengthInSpill > 0) {
InputStream partitionInputStream = null;
boolean copySpillThrewException = true;
try {
partitionInputStream = new LimitedInputStream(spillInputStreams[i],
partitionLengthInSpill, false);
partitionInputStream = blockManager.serializerManager().wrapForEncryption(
partitionInputStream);
if (compressionCodec != null) {
partitionInputStream = compressionCodec.compressedInputStream(
partitionInputStream);
}
ByteStreams.copy(partitionInputStream, partitionOutput);
copySpillThrewException = false;
} finally {
Closeables.close(partitionInputStream, copySpillThrewException);
}
}
}
copyThrewException = false;
} finally {
Closeables.close(partitionOutput, copyThrewException);
}
long numBytesWritten = writer.getNumBytesWritten();
writeMetrics.incBytesWritten(numBytesWritten);
}
threwException = false;
} finally {
// To avoid masking exceptions that caused us to prematurely enter the finally block, only
// throw exceptions during cleanup if threwException == false.
for (InputStream stream : spillInputStreams) {
Closeables.close(stream, threwException);
}
}
}
/**
* Merges spill files by using NIO's transferTo to concatenate spill partitions' bytes.
* This is only safe when the IO compression codec and serializer support concatenation of
* serialized streams.
*
* @param spills the spills to merge.
* @param mapWriter the map output writer to use for output.
* @return the partition lengths in the merged file.
*/
private void mergeSpillsWithTransferTo(
SpillInfo[] spills,
ShuffleMapOutputWriter mapWriter) throws IOException {
logger.debug("Merge shuffle spills with TransferTo for mapId {}", mapId);
final int numPartitions = partitioner.numPartitions();
final FileChannel[] spillInputChannels = new FileChannel[spills.length];
final long[] spillInputChannelPositions = new long[spills.length];
boolean threwException = true;
try {
for (int i = 0; i < spills.length; i++) {
spillInputChannels[i] = new FileInputStream(spills[i].file).getChannel();
// Only convert the partitionLengths when debug level is enabled.
if (logger.isDebugEnabled()) {
logger.debug("Partition lengths for mapId {} in Spill {}: {}", mapId, i,
Arrays.toString(spills[i].partitionLengths));
}
}
for (int partition = 0; partition < numPartitions; partition++) {
boolean copyThrewException = true;
ShufflePartitionWriter writer = mapWriter.getPartitionWriter(partition);
WritableByteChannelWrapper resolvedChannel = writer.openChannelWrapper()
.orElseGet(() -> new StreamFallbackChannelWrapper(openStreamUnchecked(writer)));
try {
for (int i = 0; i < spills.length; i++) {
long partitionLengthInSpill = spills[i].partitionLengths[partition];
final FileChannel spillInputChannel = spillInputChannels[i];
final long writeStartTime = System.nanoTime();
Utils.copyFileStreamNIO(
spillInputChannel,
resolvedChannel.channel(),
spillInputChannelPositions[i],
partitionLengthInSpill);
copyThrewException = false;
spillInputChannelPositions[i] += partitionLengthInSpill;
writeMetrics.incWriteTime(System.nanoTime() - writeStartTime);
}
} finally {
Closeables.close(resolvedChannel, copyThrewException);
}
long numBytes = writer.getNumBytesWritten();
writeMetrics.incBytesWritten(numBytes);
}
threwException = false;
} finally {
// To avoid masking exceptions that caused us to prematurely enter the finally block, only
// throw exceptions during cleanup if threwException == false.
for (int i = 0; i < spills.length; i++) {
assert(spillInputChannelPositions[i] == spills[i].file.length());
Closeables.close(spillInputChannels[i], threwException);
}
}
}
@Override
public Option<MapStatus> stop(boolean success) {
try {
taskContext.taskMetrics().incPeakExecutionMemory(getPeakMemoryUsedBytes());
if (stopping) {
return Option.apply(null);
} else {
stopping = true;
if (success) {
if (mapStatus == null) {
throw new IllegalStateException("Cannot call stop(true) without having called write()");
}
return Option.apply(mapStatus);
} else {
return Option.apply(null);
}
}
} finally {
if (sorter != null) {
// If sorter is non-null, then this implies that we called stop() in response to an error,
// so we need to clean up memory and spill files created by the sorter
sorter.cleanupResources();
}
}
}
private static OutputStream openStreamUnchecked(ShufflePartitionWriter writer) {
try {
return writer.openStream();
} catch (IOException e) {
throw new RuntimeException(e);
}
}
private static final class StreamFallbackChannelWrapper implements WritableByteChannelWrapper {
private final WritableByteChannel channel;
StreamFallbackChannelWrapper(OutputStream fallbackStream) {
this.channel = Channels.newChannel(fallbackStream);
}
@Override
public WritableByteChannel channel() {
return channel;
}
@Override
public void close() throws IOException {
channel.close();
}
}
@Override
public long[] getPartitionLengths() {
return partitionLengths;
}
}
相关信息
相关文章
spark BypassMergeSortShuffleWriter 源码
spark ShuffleExternalSorter 源码
spark ShuffleInMemorySorter 源码
0
赞
热门推荐
-
2、 - 优质文章
-
3、 gate.io
-
8、 golang
-
9、 openharmony
-
10、 Vue中input框自动聚焦