spark ShuffleExternalSorter 源码
spark ShuffleExternalSorter 代码
文件路径:/core/src/main/java/org/apache/spark/shuffle/sort/ShuffleExternalSorter.java
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.spark.shuffle.sort;
import javax.annotation.Nullable;
import java.io.File;
import java.io.IOException;
import java.util.LinkedList;
import java.util.zip.Checksum;
import org.apache.spark.SparkException;
import scala.Tuple2;
import com.google.common.annotations.VisibleForTesting;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.apache.spark.SparkConf;
import org.apache.spark.TaskContext;
import org.apache.spark.executor.ShuffleWriteMetrics;
import org.apache.spark.internal.config.package$;
import org.apache.spark.memory.MemoryConsumer;
import org.apache.spark.memory.SparkOutOfMemoryError;
import org.apache.spark.memory.TaskMemoryManager;
import org.apache.spark.memory.TooLargePageException;
import org.apache.spark.serializer.DummySerializerInstance;
import org.apache.spark.serializer.SerializerInstance;
import org.apache.spark.shuffle.ShuffleWriteMetricsReporter;
import org.apache.spark.shuffle.checksum.ShuffleChecksumSupport;
import org.apache.spark.storage.BlockManager;
import org.apache.spark.storage.DiskBlockObjectWriter;
import org.apache.spark.storage.FileSegment;
import org.apache.spark.storage.TempShuffleBlockId;
import org.apache.spark.unsafe.Platform;
import org.apache.spark.unsafe.UnsafeAlignedOffset;
import org.apache.spark.unsafe.array.LongArray;
import org.apache.spark.unsafe.memory.MemoryBlock;
import org.apache.spark.util.Utils;
/**
* An external sorter that is specialized for sort-based shuffle.
* <p>
* Incoming records are appended to data pages. When all records have been inserted (or when the
* current thread's shuffle memory limit is reached), the in-memory records are sorted according to
* their partition ids (using a {@link ShuffleInMemorySorter}). The sorted records are then
* written to a single output file (or multiple files, if we've spilled). The format of the output
* files is the same as the format of the final output file written by
* {@link org.apache.spark.shuffle.sort.SortShuffleWriter}: each output partition's records are
* written as a single serialized, compressed stream that can be read with a new decompression and
* deserialization stream.
* <p>
* Unlike {@link org.apache.spark.util.collection.ExternalSorter}, this sorter does not merge its
* spill files. Instead, this merging is performed in {@link UnsafeShuffleWriter}, which uses a
* specialized merge procedure that avoids extra serialization/deserialization.
*/
final class ShuffleExternalSorter extends MemoryConsumer implements ShuffleChecksumSupport {
private static final Logger logger = LoggerFactory.getLogger(ShuffleExternalSorter.class);
@VisibleForTesting
static final int DISK_WRITE_BUFFER_SIZE = 1024 * 1024;
private final int numPartitions;
private final TaskMemoryManager taskMemoryManager;
private final BlockManager blockManager;
private final TaskContext taskContext;
private final ShuffleWriteMetricsReporter writeMetrics;
/**
* Force this sorter to spill when there are this many elements in memory.
*/
private final int numElementsForSpillThreshold;
/** The buffer size to use when writing spills using DiskBlockObjectWriter */
private final int fileBufferSizeBytes;
/** The buffer size to use when writing the sorted records to an on-disk file */
private final int diskWriteBufferSize;
/**
* Memory pages that hold the records being sorted. The pages in this list are freed when
* spilling, although in principle we could recycle these pages across spills (on the other hand,
* this might not be necessary if we maintained a pool of re-usable pages in the TaskMemoryManager
* itself).
*/
private final LinkedList<MemoryBlock> allocatedPages = new LinkedList<>();
private final LinkedList<SpillInfo> spills = new LinkedList<>();
/** Peak memory used by this sorter so far, in bytes. **/
private long peakMemoryUsedBytes;
// These variables are reset after spilling:
@Nullable private ShuffleInMemorySorter inMemSorter;
@Nullable private MemoryBlock currentPage = null;
private long pageCursor = -1;
// Checksum calculator for each partition. Empty when shuffle checksum disabled.
private final Checksum[] partitionChecksums;
ShuffleExternalSorter(
TaskMemoryManager memoryManager,
BlockManager blockManager,
TaskContext taskContext,
int initialSize,
int numPartitions,
SparkConf conf,
ShuffleWriteMetricsReporter writeMetrics) throws SparkException {
super(memoryManager,
(int) Math.min(PackedRecordPointer.MAXIMUM_PAGE_SIZE_BYTES, memoryManager.pageSizeBytes()),
memoryManager.getTungstenMemoryMode());
this.taskMemoryManager = memoryManager;
this.blockManager = blockManager;
this.taskContext = taskContext;
this.numPartitions = numPartitions;
// Use getSizeAsKb (not bytes) to maintain backwards compatibility if no units are provided
this.fileBufferSizeBytes =
(int) (long) conf.get(package$.MODULE$.SHUFFLE_FILE_BUFFER_SIZE()) * 1024;
this.numElementsForSpillThreshold =
(int) conf.get(package$.MODULE$.SHUFFLE_SPILL_NUM_ELEMENTS_FORCE_SPILL_THRESHOLD());
this.writeMetrics = writeMetrics;
this.inMemSorter = new ShuffleInMemorySorter(
this, initialSize, (boolean) conf.get(package$.MODULE$.SHUFFLE_SORT_USE_RADIXSORT()));
this.peakMemoryUsedBytes = getMemoryUsage();
this.diskWriteBufferSize =
(int) (long) conf.get(package$.MODULE$.SHUFFLE_DISK_WRITE_BUFFER_SIZE());
this.partitionChecksums = createPartitionChecksums(numPartitions, conf);
}
public long[] getChecksums() {
return getChecksumValues(partitionChecksums);
}
/**
* Sorts the in-memory records and writes the sorted records to an on-disk file.
* This method does not free the sort data structures.
*
* @param isLastFile if true, this indicates that we're writing the final output file and that the
* bytes written should be counted towards shuffle spill metrics rather than
* shuffle write metrics.
*/
private void writeSortedFile(boolean isLastFile) {
// This call performs the actual sort.
final ShuffleInMemorySorter.ShuffleSorterIterator sortedRecords =
inMemSorter.getSortedIterator();
// If there are no sorted records, so we don't need to create an empty spill file.
if (!sortedRecords.hasNext()) {
return;
}
final ShuffleWriteMetricsReporter writeMetricsToUse;
if (isLastFile) {
// We're writing the final non-spill file, so we _do_ want to count this as shuffle bytes.
writeMetricsToUse = writeMetrics;
} else {
// We're spilling, so bytes written should be counted towards spill rather than write.
// Create a dummy WriteMetrics object to absorb these metrics, since we don't want to count
// them towards shuffle bytes written.
writeMetricsToUse = new ShuffleWriteMetrics();
}
// Small writes to DiskBlockObjectWriter will be fairly inefficient. Since there doesn't seem to
// be an API to directly transfer bytes from managed memory to the disk writer, we buffer
// data through a byte array. This array does not need to be large enough to hold a single
// record;
final byte[] writeBuffer = new byte[diskWriteBufferSize];
// Because this output will be read during shuffle, its compression codec must be controlled by
// spark.shuffle.compress instead of spark.shuffle.spill.compress, so we need to use
// createTempShuffleBlock here; see SPARK-3426 for more details.
final Tuple2<TempShuffleBlockId, File> spilledFileInfo =
blockManager.diskBlockManager().createTempShuffleBlock();
final File file = spilledFileInfo._2();
final TempShuffleBlockId blockId = spilledFileInfo._1();
final SpillInfo spillInfo = new SpillInfo(numPartitions, file, blockId);
// Unfortunately, we need a serializer instance in order to construct a DiskBlockObjectWriter.
// Our write path doesn't actually use this serializer (since we end up calling the `write()`
// OutputStream methods), but DiskBlockObjectWriter still calls some methods on it. To work
// around this, we pass a dummy no-op serializer.
final SerializerInstance ser = DummySerializerInstance.INSTANCE;
int currentPartition = -1;
final FileSegment committedSegment;
try (DiskBlockObjectWriter writer =
blockManager.getDiskWriter(blockId, file, ser, fileBufferSizeBytes, writeMetricsToUse)) {
final int uaoSize = UnsafeAlignedOffset.getUaoSize();
while (sortedRecords.hasNext()) {
sortedRecords.loadNext();
final int partition = sortedRecords.packedRecordPointer.getPartitionId();
assert (partition >= currentPartition);
if (partition != currentPartition) {
// Switch to the new partition
if (currentPartition != -1) {
final FileSegment fileSegment = writer.commitAndGet();
spillInfo.partitionLengths[currentPartition] = fileSegment.length();
}
currentPartition = partition;
if (partitionChecksums.length > 0) {
writer.setChecksum(partitionChecksums[currentPartition]);
}
}
final long recordPointer = sortedRecords.packedRecordPointer.getRecordPointer();
final Object recordPage = taskMemoryManager.getPage(recordPointer);
final long recordOffsetInPage = taskMemoryManager.getOffsetInPage(recordPointer);
int dataRemaining = UnsafeAlignedOffset.getSize(recordPage, recordOffsetInPage);
long recordReadPosition = recordOffsetInPage + uaoSize; // skip over record length
while (dataRemaining > 0) {
final int toTransfer = Math.min(diskWriteBufferSize, dataRemaining);
Platform.copyMemory(
recordPage, recordReadPosition, writeBuffer, Platform.BYTE_ARRAY_OFFSET, toTransfer);
writer.write(writeBuffer, 0, toTransfer);
recordReadPosition += toTransfer;
dataRemaining -= toTransfer;
}
writer.recordWritten();
}
committedSegment = writer.commitAndGet();
}
// If `writeSortedFile()` was called from `closeAndGetSpills()` and no records were inserted,
// then the file might be empty. Note that it might be better to avoid calling
// writeSortedFile() in that case.
if (currentPartition != -1) {
spillInfo.partitionLengths[currentPartition] = committedSegment.length();
spills.add(spillInfo);
}
if (!isLastFile) { // i.e. this is a spill file
// The current semantics of `shuffleRecordsWritten` seem to be that it's updated when records
// are written to disk, not when they enter the shuffle sorting code. DiskBlockObjectWriter
// relies on its `recordWritten()` method being called in order to trigger periodic updates to
// `shuffleBytesWritten`. If we were to remove the `recordWritten()` call and increment that
// counter at a higher-level, then the in-progress metrics for records written and bytes
// written would get out of sync.
//
// When writing the last file, we pass `writeMetrics` directly to the DiskBlockObjectWriter;
// in all other cases, we pass in a dummy write metrics to capture metrics, then copy those
// metrics to the true write metrics here. The reason for performing this copying is so that
// we can avoid reporting spilled bytes as shuffle write bytes.
//
// Note that we intentionally ignore the value of `writeMetricsToUse.shuffleWriteTime()`.
// Consistent with ExternalSorter, we do not count this IO towards shuffle write time.
// SPARK-3577 tracks the spill time separately.
// This is guaranteed to be a ShuffleWriteMetrics based on the if check in the beginning
// of this method.
writeMetrics.incRecordsWritten(
((ShuffleWriteMetrics)writeMetricsToUse).recordsWritten());
taskContext.taskMetrics().incDiskBytesSpilled(
((ShuffleWriteMetrics)writeMetricsToUse).bytesWritten());
}
}
/**
* Sort and spill the current records in response to memory pressure.
*/
@Override
public long spill(long size, MemoryConsumer trigger) throws IOException {
if (trigger != this || inMemSorter == null || inMemSorter.numRecords() == 0) {
return 0L;
}
logger.info("Thread {} spilling sort data of {} to disk ({} {} so far)",
Thread.currentThread().getId(),
Utils.bytesToString(getMemoryUsage()),
spills.size(),
spills.size() > 1 ? " times" : " time");
writeSortedFile(false);
final long spillSize = freeMemory();
inMemSorter.reset();
// Reset the in-memory sorter's pointer array only after freeing up the memory pages holding the
// records. Otherwise, if the task is over allocated memory, then without freeing the memory
// pages, we might not be able to get memory for the pointer array.
taskContext.taskMetrics().incMemoryBytesSpilled(spillSize);
return spillSize;
}
private long getMemoryUsage() {
long totalPageSize = 0;
for (MemoryBlock page : allocatedPages) {
totalPageSize += page.size();
}
return ((inMemSorter == null) ? 0 : inMemSorter.getMemoryUsage()) + totalPageSize;
}
private void updatePeakMemoryUsed() {
long mem = getMemoryUsage();
if (mem > peakMemoryUsedBytes) {
peakMemoryUsedBytes = mem;
}
}
/**
* Return the peak memory used so far, in bytes.
*/
long getPeakMemoryUsedBytes() {
updatePeakMemoryUsed();
return peakMemoryUsedBytes;
}
private long freeMemory() {
updatePeakMemoryUsed();
long memoryFreed = 0;
for (MemoryBlock block : allocatedPages) {
memoryFreed += block.size();
freePage(block);
}
allocatedPages.clear();
currentPage = null;
pageCursor = 0;
return memoryFreed;
}
/**
* Force all memory and spill files to be deleted; called by shuffle error-handling code.
*/
public void cleanupResources() {
freeMemory();
if (inMemSorter != null) {
inMemSorter.free();
inMemSorter = null;
}
for (SpillInfo spill : spills) {
if (spill.file.exists() && !spill.file.delete()) {
logger.error("Unable to delete spill file {}", spill.file.getPath());
}
}
}
/**
* Checks whether there is enough space to insert an additional record in to the sort pointer
* array and grows the array if additional space is required. If the required space cannot be
* obtained, then the in-memory data will be spilled to disk.
*/
private void growPointerArrayIfNecessary() throws IOException {
assert(inMemSorter != null);
if (!inMemSorter.hasSpaceForAnotherRecord()) {
long used = inMemSorter.getMemoryUsage();
LongArray array;
try {
// could trigger spilling
array = allocateArray(used / 8 * 2);
} catch (TooLargePageException e) {
// The pointer array is too big to fix in a single page, spill.
spill();
return;
} catch (SparkOutOfMemoryError e) {
// should have trigger spilling
if (!inMemSorter.hasSpaceForAnotherRecord()) {
logger.error("Unable to grow the pointer array");
throw e;
}
return;
}
// check if spilling is triggered or not
if (inMemSorter.hasSpaceForAnotherRecord()) {
freeArray(array);
} else {
inMemSorter.expandPointerArray(array);
}
}
}
/**
* Allocates more memory in order to insert an additional record. This will request additional
* memory from the memory manager and spill if the requested memory can not be obtained.
*
* @param required the required space in the data page, in bytes, including space for storing
* the record size. This must be less than or equal to the page size (records
* that exceed the page size are handled via a different code path which uses
* special overflow pages).
*/
private void acquireNewPageIfNecessary(int required) {
if (currentPage == null ||
pageCursor + required > currentPage.getBaseOffset() + currentPage.size() ) {
// TODO: try to find space in previous pages
currentPage = allocatePage(required);
pageCursor = currentPage.getBaseOffset();
allocatedPages.add(currentPage);
}
}
/**
* Write a record to the shuffle sorter.
*/
public void insertRecord(Object recordBase, long recordOffset, int length, int partitionId)
throws IOException {
// for tests
assert(inMemSorter != null);
if (inMemSorter.numRecords() >= numElementsForSpillThreshold) {
logger.info("Spilling data because number of spilledRecords crossed the threshold " +
numElementsForSpillThreshold);
spill();
}
growPointerArrayIfNecessary();
final int uaoSize = UnsafeAlignedOffset.getUaoSize();
// Need 4 or 8 bytes to store the record length.
final int required = length + uaoSize;
acquireNewPageIfNecessary(required);
assert(currentPage != null);
final Object base = currentPage.getBaseObject();
final long recordAddress = taskMemoryManager.encodePageNumberAndOffset(currentPage, pageCursor);
UnsafeAlignedOffset.putSize(base, pageCursor, length);
pageCursor += uaoSize;
Platform.copyMemory(recordBase, recordOffset, base, pageCursor, length);
pageCursor += length;
inMemSorter.insertRecord(recordAddress, partitionId);
}
/**
* Close the sorter, causing any buffered data to be sorted and written out to disk.
*
* @return metadata for the spill files written by this sorter. If no records were ever inserted
* into this sorter, then this will return an empty array.
*/
public SpillInfo[] closeAndGetSpills() throws IOException {
if (inMemSorter != null) {
// Do not count the final file towards the spill count.
writeSortedFile(true);
freeMemory();
inMemSorter.free();
inMemSorter = null;
}
return spills.toArray(new SpillInfo[spills.size()]);
}
}
相关信息
相关文章
spark BypassMergeSortShuffleWriter 源码
spark ShuffleInMemorySorter 源码
0
赞
热门推荐
-
2、 - 优质文章
-
3、 gate.io
-
8、 golang
-
9、 openharmony
-
10、 Vue中input框自动聚焦