spark FileWrite 源码
spark FileWrite 代码
文件路径:/sql/core/src/main/scala/org/apache/spark/sql/execution/datasources/v2/FileWrite.scala
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.spark.sql.execution.datasources.v2
import java.util.UUID
import scala.collection.JavaConverters._
import org.apache.hadoop.conf.Configuration
import org.apache.hadoop.fs.Path
import org.apache.hadoop.mapreduce.Job
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat
import org.apache.spark.internal.io.FileCommitProtocol
import org.apache.spark.sql.SparkSession
import org.apache.spark.sql.catalyst.InternalRow
import org.apache.spark.sql.catalyst.util.{CaseInsensitiveMap, DateTimeUtils}
import org.apache.spark.sql.connector.write.{BatchWrite, LogicalWriteInfo, Write}
import org.apache.spark.sql.errors.QueryCompilationErrors
import org.apache.spark.sql.execution.datasources.{BasicWriteJobStatsTracker, DataSource, OutputWriterFactory, WriteJobDescription}
import org.apache.spark.sql.execution.metric.SQLMetric
import org.apache.spark.sql.internal.SQLConf
import org.apache.spark.sql.types.{DataType, StructType}
import org.apache.spark.sql.util.SchemaUtils
import org.apache.spark.util.SerializableConfiguration
trait FileWrite extends Write {
def paths: Seq[String]
def formatName: String
def supportsDataType: DataType => Boolean
def info: LogicalWriteInfo
private val schema = info.schema()
private val queryId = info.queryId()
private val options = info.options()
override def description(): String = formatName
override def toBatch: BatchWrite = {
val sparkSession = SparkSession.active
validateInputs(sparkSession.sessionState.conf.caseSensitiveAnalysis)
val path = new Path(paths.head)
val caseSensitiveMap = options.asCaseSensitiveMap.asScala.toMap
// Hadoop Configurations are case sensitive.
val hadoopConf = sparkSession.sessionState.newHadoopConfWithOptions(caseSensitiveMap)
val job = getJobInstance(hadoopConf, path)
val committer = FileCommitProtocol.instantiate(
sparkSession.sessionState.conf.fileCommitProtocolClass,
jobId = java.util.UUID.randomUUID().toString,
outputPath = paths.head)
lazy val description =
createWriteJobDescription(sparkSession, hadoopConf, job, paths.head, options.asScala.toMap)
committer.setupJob(job)
new FileBatchWrite(job, description, committer)
}
/**
* Prepares a write job and returns an [[OutputWriterFactory]]. Client side job preparation can
* be put here. For example, user defined output committer can be configured here
* by setting the output committer class in the conf of spark.sql.sources.outputCommitterClass.
*/
def prepareWrite(
sqlConf: SQLConf,
job: Job,
options: Map[String, String],
dataSchema: StructType): OutputWriterFactory
private def validateInputs(caseSensitiveAnalysis: Boolean): Unit = {
assert(schema != null, "Missing input data schema")
assert(queryId != null, "Missing query ID")
if (paths.length != 1) {
throw new IllegalArgumentException("Expected exactly one path to be specified, but " +
s"got: ${paths.mkString(", ")}")
}
val pathName = paths.head
SchemaUtils.checkColumnNameDuplication(schema.fields.map(_.name),
s"when inserting into $pathName", caseSensitiveAnalysis)
DataSource.validateSchema(schema)
// TODO: [SPARK-36340] Unify check schema filed of DataSource V2 Insert.
schema.foreach { field =>
if (!supportsDataType(field.dataType)) {
throw QueryCompilationErrors.dataTypeUnsupportedByDataSourceError(formatName, field)
}
}
}
private def getJobInstance(hadoopConf: Configuration, path: Path): Job = {
val job = Job.getInstance(hadoopConf)
job.setOutputKeyClass(classOf[Void])
job.setOutputValueClass(classOf[InternalRow])
FileOutputFormat.setOutputPath(job, path)
job
}
private def createWriteJobDescription(
sparkSession: SparkSession,
hadoopConf: Configuration,
job: Job,
pathName: String,
options: Map[String, String]): WriteJobDescription = {
val caseInsensitiveOptions = CaseInsensitiveMap(options)
// Note: prepareWrite has side effect. It sets "job".
val outputWriterFactory =
prepareWrite(sparkSession.sessionState.conf, job, caseInsensitiveOptions, schema)
val allColumns = schema.toAttributes
val metrics: Map[String, SQLMetric] = BasicWriteJobStatsTracker.metrics
val serializableHadoopConf = new SerializableConfiguration(hadoopConf)
val statsTracker = new BasicWriteJobStatsTracker(serializableHadoopConf, metrics)
// TODO: after partitioning is supported in V2:
// 1. filter out partition columns in `dataColumns`.
// 2. Don't use Seq.empty for `partitionColumns`.
new WriteJobDescription(
uuid = UUID.randomUUID().toString,
serializableHadoopConf = new SerializableConfiguration(job.getConfiguration),
outputWriterFactory = outputWriterFactory,
allColumns = allColumns,
dataColumns = allColumns,
partitionColumns = Seq.empty,
bucketSpec = None,
path = pathName,
customPartitionLocations = Map.empty,
maxRecordsPerFile = caseInsensitiveOptions.get("maxRecordsPerFile").map(_.toLong)
.getOrElse(sparkSession.sessionState.conf.maxRecordsPerFile),
timeZoneId = caseInsensitiveOptions.get(DateTimeUtils.TIMEZONE_OPTION)
.getOrElse(sparkSession.sessionState.conf.sessionLocalTimeZone),
statsTrackers = Seq(statsTracker)
)
}
}
相关信息
相关文章
0
赞
- 所属分类: 前端技术
- 本文标签:
热门推荐
-
2、 - 优质文章
-
3、 gate.io
-
8、 golang
-
9、 openharmony
-
10、 Vue中input框自动聚焦