kafka LazyDownConversionRecords 源码

  • 2022-10-20
  • 浏览 (418)

kafka LazyDownConversionRecords 代码

文件路径:/clients/src/main/java/org/apache/kafka/common/record/LazyDownConversionRecords.java

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements. See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License. You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.kafka.common.record;

import org.apache.kafka.common.TopicPartition;
import org.apache.kafka.common.utils.AbstractIterator;
import org.apache.kafka.common.utils.Time;

import java.util.ArrayList;
import java.util.List;
import java.util.Objects;

/**
 * Encapsulation for holding records that require down-conversion in a lazy, chunked manner (KIP-283). See
 * {@link LazyDownConversionRecordsSend} for the actual chunked send implementation.
 */
public class LazyDownConversionRecords implements BaseRecords {
    private final TopicPartition topicPartition;
    private final Records records;
    private final byte toMagic;
    private final long firstOffset;
    private ConvertedRecords firstConvertedBatch;
    private final int sizeInBytes;
    private final Time time;

    /**
     * @param topicPartition The topic-partition to which records belong
     * @param records Records to lazily down-convert
     * @param toMagic Magic version to down-convert to
     * @param firstOffset The starting offset for down-converted records. This only impacts some cases. See
     *                    {@link RecordsUtil#downConvert(Iterable, byte, long, Time)} for an explanation.
     * @param time The time instance to use
     *
     * @throws org.apache.kafka.common.errors.UnsupportedCompressionTypeException If the first batch to down-convert
     *    has a compression type which we do not support down-conversion for.
     */
    public LazyDownConversionRecords(TopicPartition topicPartition, Records records, byte toMagic, long firstOffset, Time time) {
        this.topicPartition = Objects.requireNonNull(topicPartition);
        this.records = Objects.requireNonNull(records);
        this.toMagic = toMagic;
        this.firstOffset = firstOffset;
        this.time = Objects.requireNonNull(time);

        // To make progress, kafka consumers require at least one full record batch per partition, i.e. we need to
        // ensure we can accommodate one full batch of down-converted messages. We achieve this by having `sizeInBytes`
        // factor in the size of the first down-converted batch and we return at least that many bytes.
        java.util.Iterator<ConvertedRecords<?>> it = iterator(0);
        if (it.hasNext()) {
            firstConvertedBatch = it.next();
            sizeInBytes = Math.max(records.sizeInBytes(), firstConvertedBatch.records().sizeInBytes());
        } else {
            // If there are messages before down-conversion and no messages after down-conversion,
            // make sure we are able to send at least an overflow message to the consumer so that it can throw
            // a RecordTooLargeException. Typically, the consumer would need to increase the fetch size in such cases.
            // If there are no messages before down-conversion, we return an empty record batch.
            firstConvertedBatch = null;
            sizeInBytes = records.batches().iterator().hasNext() ? LazyDownConversionRecordsSend.MIN_OVERFLOW_MESSAGE_LENGTH : 0;
        }
    }

    @Override
    public int sizeInBytes() {
        return sizeInBytes;
    }

    @Override
    public LazyDownConversionRecordsSend toSend() {
        return new LazyDownConversionRecordsSend(this);
    }

    public TopicPartition topicPartition() {
        return topicPartition;
    }

    @Override
    public boolean equals(Object o) {
        if (o instanceof LazyDownConversionRecords) {
            LazyDownConversionRecords that = (LazyDownConversionRecords) o;
            return toMagic == that.toMagic &&
                    firstOffset == that.firstOffset &&
                    topicPartition.equals(that.topicPartition) &&
                    records.equals(that.records);
        }
        return false;
    }

    @Override
    public int hashCode() {
        int result = toMagic;
        result = 31 * result + Long.hashCode(firstOffset);
        result = 31 * result + topicPartition.hashCode();
        result = 31 * result + records.hashCode();
        return result;
    }

    @Override
    public String toString() {
        return "LazyDownConversionRecords(size=" + sizeInBytes +
                ", underlying=" + records +
                ", toMagic=" + toMagic +
                ", firstOffset=" + firstOffset +
                ")";
    }

    public java.util.Iterator<ConvertedRecords<?>> iterator(long maximumReadSize) {
        // We typically expect only one iterator instance to be created, so null out the first converted batch after
        // first use to make it available for GC.
        ConvertedRecords firstBatch = firstConvertedBatch;
        firstConvertedBatch = null;
        return new Iterator(records, maximumReadSize, firstBatch);
    }

    /**
     * Implementation for being able to iterate over down-converted records. Goal of this implementation is to keep
     * it as memory-efficient as possible by not having to maintain all down-converted records in-memory. Maintains
     * a view into batches of down-converted records.
     */
    private class Iterator extends AbstractIterator<ConvertedRecords<?>> {
        private final AbstractIterator<? extends RecordBatch> batchIterator;
        private final long maximumReadSize;
        private ConvertedRecords firstConvertedBatch;

        /**
         * @param recordsToDownConvert Records that require down-conversion
         * @param maximumReadSize Maximum possible size of underlying records that will be down-converted in each call to
         *                        {@link #makeNext()}. This is a soft limit as {@link #makeNext()} will always convert
         *                        and return at least one full message batch.
         */
        private Iterator(Records recordsToDownConvert, long maximumReadSize, ConvertedRecords<?> firstConvertedBatch) {
            this.batchIterator = recordsToDownConvert.batchIterator();
            this.maximumReadSize = maximumReadSize;
            this.firstConvertedBatch = firstConvertedBatch;
            // If we already have the first down-converted batch, advance the underlying records iterator to next batch
            if (firstConvertedBatch != null)
                this.batchIterator.next();
        }

        /**
         * Make next set of down-converted records
         * @return Down-converted records
         */
        @Override
        protected ConvertedRecords makeNext() {
            // If we have cached the first down-converted batch, return that now
            if (firstConvertedBatch != null) {
                ConvertedRecords convertedBatch = firstConvertedBatch;
                firstConvertedBatch = null;
                return convertedBatch;
            }

            while (batchIterator.hasNext()) {
                final List<RecordBatch> batches = new ArrayList<>();
                boolean isFirstBatch = true;
                long sizeSoFar = 0;

                // Figure out batches we should down-convert based on the size constraints
                while (batchIterator.hasNext() &&
                        (isFirstBatch || (batchIterator.peek().sizeInBytes() + sizeSoFar) <= maximumReadSize)) {
                    RecordBatch currentBatch = batchIterator.next();
                    batches.add(currentBatch);
                    sizeSoFar += currentBatch.sizeInBytes();
                    isFirstBatch = false;
                }

                ConvertedRecords convertedRecords = RecordsUtil.downConvert(batches, toMagic, firstOffset, time);
                // During conversion, it is possible that we drop certain batches because they do not have an equivalent
                // representation in the message format we want to convert to. For example, V0 and V1 message formats
                // have no notion of transaction markers which were introduced in V2 so they get dropped during conversion.
                // We return converted records only when we have at least one valid batch of messages after conversion.
                if (convertedRecords.records().sizeInBytes() > 0)
                    return convertedRecords;
            }
            return allDone();
        }
    }
}

相关信息

kafka 源码目录

相关文章

kafka AbstractLegacyRecordBatch 源码

kafka AbstractRecordBatch 源码

kafka AbstractRecords 源码

kafka BaseRecords 源码

kafka ByteBufferLogInputStream 源码

kafka CompressionRatioEstimator 源码

kafka CompressionType 源码

kafka ControlRecordType 源码

kafka ControlRecordUtils 源码

kafka ConvertedRecords 源码

0  赞