kafka AbstractRecords 源码

  • 2022-10-20
  • 浏览 (522)

kafka AbstractRecords 代码

文件路径:/clients/src/main/java/org/apache/kafka/common/record/AbstractRecords.java

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements. See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License. You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.kafka.common.record;

import org.apache.kafka.common.header.Header;
import org.apache.kafka.common.utils.AbstractIterator;
import org.apache.kafka.common.utils.Utils;

import java.nio.ByteBuffer;
import java.util.Iterator;

public abstract class AbstractRecords implements Records {

    private final Iterable<Record> records = this::recordsIterator;

    @Override
    public boolean hasMatchingMagic(byte magic) {
        for (RecordBatch batch : batches())
            if (batch.magic() != magic)
                return false;
        return true;
    }

    public RecordBatch firstBatch() {
        Iterator<? extends RecordBatch> iterator = batches().iterator();

        if (!iterator.hasNext())
            return null;

        return iterator.next();
    }

    /**
     * Get an iterator over the deep records.
     * @return An iterator over the records
     */
    @Override
    public Iterable<Record> records() {
        return records;
    }

    @Override
    public DefaultRecordsSend<Records> toSend() {
        return new DefaultRecordsSend<>(this);
    }

    private Iterator<Record> recordsIterator() {
        return new AbstractIterator<Record>() {
            private final Iterator<? extends RecordBatch> batches = batches().iterator();
            private Iterator<Record> records;

            @Override
            protected Record makeNext() {
                if (records != null && records.hasNext())
                    return records.next();

                if (batches.hasNext()) {
                    records = batches.next().iterator();
                    return makeNext();
                }

                return allDone();
            }
        };
    }

    public static int estimateSizeInBytes(byte magic,
                                          long baseOffset,
                                          CompressionType compressionType,
                                          Iterable<Record> records) {
        int size = 0;
        if (magic <= RecordBatch.MAGIC_VALUE_V1) {
            for (Record record : records)
                size += Records.LOG_OVERHEAD + LegacyRecord.recordSize(magic, record.key(), record.value());
        } else {
            size = DefaultRecordBatch.sizeInBytes(baseOffset, records);
        }
        return estimateCompressedSizeInBytes(size, compressionType);
    }

    public static int estimateSizeInBytes(byte magic,
                                          CompressionType compressionType,
                                          Iterable<SimpleRecord> records) {
        int size = 0;
        if (magic <= RecordBatch.MAGIC_VALUE_V1) {
            for (SimpleRecord record : records)
                size += Records.LOG_OVERHEAD + LegacyRecord.recordSize(magic, record.key(), record.value());
        } else {
            size = DefaultRecordBatch.sizeInBytes(records);
        }
        return estimateCompressedSizeInBytes(size, compressionType);
    }

    private static int estimateCompressedSizeInBytes(int size, CompressionType compressionType) {
        return compressionType == CompressionType.NONE ? size : Math.min(Math.max(size / 2, 1024), 1 << 16);
    }

    /**
     * Get an upper bound estimate on the batch size needed to hold a record with the given fields. This is only
     * an estimate because it does not take into account overhead from the compression algorithm.
     */
    public static int estimateSizeInBytesUpperBound(byte magic, CompressionType compressionType, byte[] key, byte[] value, Header[] headers) {
        return estimateSizeInBytesUpperBound(magic, compressionType, Utils.wrapNullable(key), Utils.wrapNullable(value), headers);
    }

    /**
     * Get an upper bound estimate on the batch size needed to hold a record with the given fields. This is only
     * an estimate because it does not take into account overhead from the compression algorithm.
     */
    public static int estimateSizeInBytesUpperBound(byte magic, CompressionType compressionType, ByteBuffer key,
                                                    ByteBuffer value, Header[] headers) {
        if (magic >= RecordBatch.MAGIC_VALUE_V2)
            return DefaultRecordBatch.estimateBatchSizeUpperBound(key, value, headers);
        else if (compressionType != CompressionType.NONE)
            return Records.LOG_OVERHEAD + LegacyRecord.recordOverhead(magic) + LegacyRecord.recordSize(magic, key, value);
        else
            return Records.LOG_OVERHEAD + LegacyRecord.recordSize(magic, key, value);
    }

    /**
     * Return the size of the record batch header.
     *
     * For V0 and V1 with no compression, it's unclear if Records.LOG_OVERHEAD or 0 should be chosen. There is no header
     * per batch, but a sequence of batches is preceded by the offset and size. This method returns `0` as it's what
     * `MemoryRecordsBuilder` requires.
     */
    public static int recordBatchHeaderSizeInBytes(byte magic, CompressionType compressionType) {
        if (magic > RecordBatch.MAGIC_VALUE_V1) {
            return DefaultRecordBatch.RECORD_BATCH_OVERHEAD;
        } else if (compressionType != CompressionType.NONE) {
            return Records.LOG_OVERHEAD + LegacyRecord.recordOverhead(magic);
        } else {
            return 0;
        }
    }


}

相关信息

kafka 源码目录

相关文章

kafka AbstractLegacyRecordBatch 源码

kafka AbstractRecordBatch 源码

kafka BaseRecords 源码

kafka ByteBufferLogInputStream 源码

kafka CompressionRatioEstimator 源码

kafka CompressionType 源码

kafka ControlRecordType 源码

kafka ControlRecordUtils 源码

kafka ConvertedRecords 源码

kafka DefaultRecord 源码

0  赞