spark EventFilter 源码

  • 2022-10-20
  • 浏览 (476)

spark EventFilter 代码

文件路径:/core/src/main/scala/org/apache/spark/deploy/history/EventFilter.scala

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.spark.deploy.history

import scala.io.{Codec, Source}
import scala.util.control.NonFatal

import org.apache.hadoop.fs.{FileSystem, Path}

import org.apache.spark.deploy.history.EventFilter.FilterStatistics
import org.apache.spark.internal.Logging
import org.apache.spark.scheduler._
import org.apache.spark.util.{JsonProtocol, Utils}

/**
 * EventFilterBuilder provides the interface to gather the information from events being received
 * by [[SparkListenerInterface]], and create a new [[EventFilter]] instance which leverages
 * information gathered to decide whether the event should be accepted or not.
 */
private[spark] trait EventFilterBuilder extends SparkListenerInterface {
  def createFilter(): EventFilter
}

/** [[EventFilter]] decides whether the given event should be accepted or rejected. */
private[spark] trait EventFilter {
  /**
   * Provide statistic information of event filter, which would be used for measuring the score
   * of compaction.
   *
   * To simplify the condition, currently the fields of statistic are static, since major kinds of
   * events compaction would filter out are job related event types. If the filter doesn't track
   * with job related events, return None instead.
   */
  def statistics(): Option[FilterStatistics]

  /**
   * Classify whether the event is accepted or rejected by this filter.
   *
   * The method should return the partial function which matches the events where the filter can
   * decide whether the event should be accepted or rejected. Otherwise it should leave the events
   * be unmatched.
   */
  def acceptFn(): PartialFunction[SparkListenerEvent, Boolean]
}

private[spark] object EventFilter extends Logging {
  case class FilterStatistics(
      totalJobs: Long,
      liveJobs: Long,
      totalStages: Long,
      liveStages: Long,
      totalTasks: Long,
      liveTasks: Long)

  def applyFilterToFile(
      fs: FileSystem,
      filters: Seq[EventFilter],
      path: Path,
      onAccepted: (String, SparkListenerEvent) => Unit,
      onRejected: (String, SparkListenerEvent) => Unit,
      onUnidentified: String => Unit): Unit = {
    Utils.tryWithResource(EventLogFileReader.openEventLog(path, fs)) { in =>
      val lines = Source.fromInputStream(in)(Codec.UTF8).getLines()

      lines.zipWithIndex.foreach { case (line, lineNum) =>
        try {
          val event = try {
            Some(JsonProtocol.sparkEventFromJson(line))
          } catch {
            // ignore any exception occurred from unidentified json
            case NonFatal(_) =>
              onUnidentified(line)
              None
          }

          event.foreach { e =>
            val results = filters.flatMap(_.acceptFn().lift.apply(e))
            if (results.nonEmpty && results.forall(_ == false)) {
              onRejected(line, e)
            } else {
              onAccepted(line, e)
            }
          }
        } catch {
          case e: Exception =>
            logError(s"Exception parsing Spark event log: ${path.getName}", e)
            logError(s"Malformed line #$lineNum: $line\n")
            throw e
        }
      }
    }
  }
}

相关信息

spark 源码目录

相关文章

spark ApplicationCache 源码

spark ApplicationHistoryProvider 源码

spark BasicEventFilterBuilder 源码

spark EventLogFileCompactor 源码

spark EventLogFileReaders 源码

spark EventLogFileWriters 源码

spark FsHistoryProvider 源码

spark HistoryAppStatusStore 源码

spark HistoryPage 源码

spark HistoryServer 源码

0  赞