superset hive 源码

  • 2022-10-20
  • 浏览 (420)

superset hive 代码

文件路径:/superset/db_engine_specs/hive.py

# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.
import logging
import os
import re
import tempfile
import time
from datetime import datetime
from typing import Any, Dict, List, Optional, Tuple, TYPE_CHECKING
from urllib import parse

import numpy as np
import pandas as pd
import pyarrow as pa
import pyarrow.parquet as pq
from flask import current_app, g
from sqlalchemy import Column, text
from sqlalchemy.engine.base import Engine
from sqlalchemy.engine.reflection import Inspector
from sqlalchemy.engine.url import URL
from sqlalchemy.orm import Session
from sqlalchemy.sql.expression import ColumnClause, Select

from superset.common.db_query_status import QueryStatus
from superset.databases.utils import make_url_safe
from superset.db_engine_specs.base import BaseEngineSpec
from superset.db_engine_specs.presto import PrestoEngineSpec
from superset.exceptions import SupersetException
from superset.extensions import cache_manager
from superset.models.sql_lab import Query
from superset.sql_parse import ParsedQuery, Table
from superset.utils import core as utils

if TYPE_CHECKING:
    # prevent circular imports
    from superset.models.core import Database

logger = logging.getLogger(__name__)


def upload_to_s3(filename: str, upload_prefix: str, table: Table) -> str:
    """
    Upload the file to S3.

    :param filename: The file to upload
    :param upload_prefix: The S3 prefix
    :param table: The table that will be created
    :returns: The S3 location of the table
    """

    # pylint: disable=import-outside-toplevel
    import boto3
    from boto3.s3.transfer import TransferConfig

    bucket_path = current_app.config["CSV_TO_HIVE_UPLOAD_S3_BUCKET"]

    if not bucket_path:
        logger.info("No upload bucket specified")
        raise Exception(
            "No upload bucket specified. You can specify one in the config file."
        )

    s3 = boto3.client("s3")
    location = os.path.join("s3a://", bucket_path, upload_prefix, table.table)
    s3.upload_file(
        filename,
        bucket_path,
        os.path.join(upload_prefix, table.table, os.path.basename(filename)),
        Config=TransferConfig(use_threads=False),  # Threading is broken in Python 3.9.
    )
    return location


class HiveEngineSpec(PrestoEngineSpec):
    """Reuses PrestoEngineSpec functionality."""

    engine = "hive"
    engine_name = "Apache Hive"
    max_column_name_length = 767
    allows_alias_to_source_column = True
    allows_hidden_ordeby_agg = False

    # When running `SHOW FUNCTIONS`, what is the name of the column with the
    # function names?
    _show_functions_column = "tab_name"

    # pylint: disable=line-too-long
    _time_grain_expressions = {
        None: "{col}",
        "PT1S": "from_unixtime(unix_timestamp({col}), 'yyyy-MM-dd HH:mm:ss')",
        "PT1M": "from_unixtime(unix_timestamp({col}), 'yyyy-MM-dd HH:mm:00')",
        "PT1H": "from_unixtime(unix_timestamp({col}), 'yyyy-MM-dd HH:00:00')",
        "P1D": "from_unixtime(unix_timestamp({col}), 'yyyy-MM-dd 00:00:00')",
        "P1W": "date_format(date_sub({col}, CAST(7-from_unixtime(unix_timestamp({col}),'u') as int)), 'yyyy-MM-dd 00:00:00')",
        "P1M": "from_unixtime(unix_timestamp({col}), 'yyyy-MM-01 00:00:00')",
        "P3M": "date_format(add_months(trunc({col}, 'MM'), -(month({col})-1)%3), 'yyyy-MM-dd 00:00:00')",
        "P1Y": "from_unixtime(unix_timestamp({col}), 'yyyy-01-01 00:00:00')",
        "P1W/1970-01-03T00:00:00Z": "date_format(date_add({col}, INT(6-from_unixtime(unix_timestamp({col}), 'u'))), 'yyyy-MM-dd 00:00:00')",
        "1969-12-28T00:00:00Z/P1W": "date_format(date_add({col}, -INT(from_unixtime(unix_timestamp({col}), 'u'))), 'yyyy-MM-dd 00:00:00')",
    }

    # Scoping regex at class level to avoid recompiling
    # 17/02/07 19:36:38 INFO ql.Driver: Total jobs = 5
    jobs_stats_r = re.compile(r".*INFO.*Total jobs = (?P<max_jobs>[0-9]+)")
    # 17/02/07 19:37:08 INFO ql.Driver: Launching Job 2 out of 5
    launching_job_r = re.compile(
        ".*INFO.*Launching Job (?P<job_number>[0-9]+) out of " "(?P<max_jobs>[0-9]+)"
    )
    # 17/02/07 19:36:58 INFO exec.Task: 2017-02-07 19:36:58,152 Stage-18
    # map = 0%,  reduce = 0%
    stage_progress_r = re.compile(
        r".*INFO.*Stage-(?P<stage_number>[0-9]+).*"
        r"map = (?P<map_progress>[0-9]+)%.*"
        r"reduce = (?P<reduce_progress>[0-9]+)%.*"
    )

    @classmethod
    def patch(cls) -> None:
        # pylint: disable=import-outside-toplevel
        from pyhive import hive
        from TCLIService import (
            constants as patched_constants,
            TCLIService as patched_TCLIService,
            ttypes as patched_ttypes,
        )

        from superset.db_engines import hive as patched_hive

        hive.TCLIService = patched_TCLIService
        hive.constants = patched_constants
        hive.ttypes = patched_ttypes
        hive.Cursor.fetch_logs = patched_hive.fetch_logs

    @classmethod
    def fetch_data(
        cls, cursor: Any, limit: Optional[int] = None
    ) -> List[Tuple[Any, ...]]:
        # pylint: disable=import-outside-toplevel
        import pyhive
        from TCLIService import ttypes

        state = cursor.poll()
        if state.operationState == ttypes.TOperationState.ERROR_STATE:
            raise Exception("Query error", state.errorMessage)
        try:
            return super().fetch_data(cursor, limit)
        except pyhive.exc.ProgrammingError:
            return []

    @classmethod
    def df_to_sql(
        cls,
        database: "Database",
        table: Table,
        df: pd.DataFrame,
        to_sql_kwargs: Dict[str, Any],
    ) -> None:
        """
        Upload data from a Pandas DataFrame to a database.

        The data is stored via the binary Parquet format which is both less problematic
        and more performant than a text file. More specifically storing a table as a
        CSV text file has severe limitations including the fact that the Hive CSV SerDe
        does not support multiline fields.

        Note this method does not create metadata for the table.

        :param database: The database to upload the data to
        :param: table The table to upload the data to
        :param df: The dataframe with data to be uploaded
        :param to_sql_kwargs: The kwargs to be passed to pandas.DataFrame.to_sql` method
        """

        engine = cls.get_engine(database)

        if to_sql_kwargs["if_exists"] == "append":
            raise SupersetException("Append operation not currently supported")

        if to_sql_kwargs["if_exists"] == "fail":

            # Ensure table doesn't already exist.
            if table.schema:
                table_exists = not database.get_df(
                    f"SHOW TABLES IN {table.schema} LIKE '{table.table}'"
                ).empty
            else:
                table_exists = not database.get_df(
                    f"SHOW TABLES LIKE '{table.table}'"
                ).empty

            if table_exists:
                raise SupersetException("Table already exists")
        elif to_sql_kwargs["if_exists"] == "replace":
            engine.execute(f"DROP TABLE IF EXISTS {str(table)}")

        def _get_hive_type(dtype: np.dtype) -> str:
            hive_type_by_dtype = {
                np.dtype("bool"): "BOOLEAN",
                np.dtype("float64"): "DOUBLE",
                np.dtype("int64"): "BIGINT",
                np.dtype("object"): "STRING",
            }

            return hive_type_by_dtype.get(dtype, "STRING")

        schema_definition = ", ".join(
            f"`{name}` {_get_hive_type(dtype)}" for name, dtype in df.dtypes.items()
        )

        with tempfile.NamedTemporaryFile(
            dir=current_app.config["UPLOAD_FOLDER"], suffix=".parquet"
        ) as file:
            pq.write_table(pa.Table.from_pandas(df), where=file.name)

            engine.execute(
                text(
                    f"""
                    CREATE TABLE {str(table)} ({schema_definition})
                    STORED AS PARQUET
                    LOCATION :location
                    """
                ),
                location=upload_to_s3(
                    filename=file.name,
                    upload_prefix=current_app.config[
                        "CSV_TO_HIVE_UPLOAD_DIRECTORY_FUNC"
                    ](database, g.user, table.schema),
                    table=table,
                ),
            )

    @classmethod
    def convert_dttm(
        cls, target_type: str, dttm: datetime, db_extra: Optional[Dict[str, Any]] = None
    ) -> Optional[str]:
        tt = target_type.upper()
        if tt == utils.TemporalType.DATE:
            return f"CAST('{dttm.date().isoformat()}' AS DATE)"
        if tt == utils.TemporalType.TIMESTAMP:
            return f"""CAST('{dttm
                .isoformat(sep=" ", timespec="microseconds")}' AS TIMESTAMP)"""
        return None

    @classmethod
    def adjust_database_uri(
        cls, uri: URL, selected_schema: Optional[str] = None
    ) -> URL:
        if selected_schema:
            uri = uri.set(database=parse.quote(selected_schema, safe=""))

        return uri

    @classmethod
    def _extract_error_message(cls, ex: Exception) -> str:
        msg = str(ex)
        match = re.search(r'errorMessage="(.*?)(?<!\\)"', msg)
        if match:
            msg = match.group(1)
        return msg

    @classmethod
    def progress(cls, log_lines: List[str]) -> int:
        total_jobs = 1  # assuming there's at least 1 job
        current_job = 1
        stages: Dict[int, float] = {}
        for line in log_lines:
            match = cls.jobs_stats_r.match(line)
            if match:
                total_jobs = int(match.groupdict()["max_jobs"]) or 1
            match = cls.launching_job_r.match(line)
            if match:
                current_job = int(match.groupdict()["job_number"])
                total_jobs = int(match.groupdict()["max_jobs"]) or 1
                stages = {}
            match = cls.stage_progress_r.match(line)
            if match:
                stage_number = int(match.groupdict()["stage_number"])
                map_progress = int(match.groupdict()["map_progress"])
                reduce_progress = int(match.groupdict()["reduce_progress"])
                stages[stage_number] = (map_progress + reduce_progress) / 2
        logger.info(
            "Progress detail: {}, "  # pylint: disable=logging-format-interpolation
            "current job {}, "
            "total jobs: {}".format(stages, current_job, total_jobs)
        )

        stage_progress = sum(stages.values()) / len(stages.values()) if stages else 0

        progress = 100 * (current_job - 1) / total_jobs + stage_progress / total_jobs
        return int(progress)

    @classmethod
    def get_tracking_url_from_logs(cls, log_lines: List[str]) -> Optional[str]:
        lkp = "Tracking URL = "
        for line in log_lines:
            if lkp in line:
                return line.split(lkp)[1]
        return None

    @classmethod
    def handle_cursor(  # pylint: disable=too-many-locals
        cls, cursor: Any, query: Query, session: Session
    ) -> None:
        """Updates progress information"""
        # pylint: disable=import-outside-toplevel
        from pyhive import hive

        unfinished_states = (
            hive.ttypes.TOperationState.INITIALIZED_STATE,
            hive.ttypes.TOperationState.RUNNING_STATE,
        )
        polled = cursor.poll()
        last_log_line = 0
        tracking_url = None
        job_id = None
        query_id = query.id
        while polled.operationState in unfinished_states:
            # Queries don't terminate when user clicks the STOP button on SQL LAB.
            # Refresh session so that the `query.status` modified in stop_query in
            # views/core.py is reflected here.
            session.refresh(query)
            query = session.query(type(query)).filter_by(id=query_id).one()
            if query.status == QueryStatus.STOPPED:
                cursor.cancel()
                break

            try:
                log = cursor.fetch_logs() or ""
            except Exception:  # pylint: disable=broad-except
                logger.warning("Call to GetLog() failed")
                log = ""

            if log:
                log_lines = log.splitlines()
                progress = cls.progress(log_lines)
                logger.info(
                    "Query %s: Progress total: %s", str(query_id), str(progress)
                )
                needs_commit = False
                if progress > query.progress:
                    query.progress = progress
                    needs_commit = True
                if not tracking_url:
                    tracking_url = cls.get_tracking_url_from_logs(log_lines)
                    if tracking_url:
                        job_id = tracking_url.split("/")[-2]
                        logger.info(
                            "Query %s: Found the tracking url: %s",
                            str(query_id),
                            tracking_url,
                        )
                        query.tracking_url = tracking_url
                        logger.info("Query %s: Job id: %s", str(query_id), str(job_id))
                        needs_commit = True
                if job_id and len(log_lines) > last_log_line:
                    # Wait for job id before logging things out
                    # this allows for prefixing all log lines and becoming
                    # searchable in something like Kibana
                    for l in log_lines[last_log_line:]:
                        logger.info("Query %s: [%s] %s", str(query_id), str(job_id), l)
                    last_log_line = len(log_lines)
                if needs_commit:
                    session.commit()
            time.sleep(current_app.config["HIVE_POLL_INTERVAL"])
            polled = cursor.poll()

    @classmethod
    def get_columns(
        cls, inspector: Inspector, table_name: str, schema: Optional[str]
    ) -> List[Dict[str, Any]]:
        return inspector.get_columns(table_name, schema)

    @classmethod
    def where_latest_partition(  # pylint: disable=too-many-arguments
        cls,
        table_name: str,
        schema: Optional[str],
        database: "Database",
        query: Select,
        columns: Optional[List[Dict[str, str]]] = None,
    ) -> Optional[Select]:
        try:
            col_names, values = cls.latest_partition(
                table_name, schema, database, show_first=True
            )
        except Exception:  # pylint: disable=broad-except
            # table is not partitioned
            return None
        if values is not None and columns is not None:
            for col_name, value in zip(col_names, values):
                for clm in columns:
                    if clm.get("name") == col_name:
                        query = query.where(Column(col_name) == value)

            return query
        return None

    @classmethod
    def _get_fields(cls, cols: List[Dict[str, Any]]) -> List[ColumnClause]:
        return BaseEngineSpec._get_fields(cols)  # pylint: disable=protected-access

    @classmethod
    def latest_sub_partition(
        cls, table_name: str, schema: Optional[str], database: "Database", **kwargs: Any
    ) -> str:
        # TODO(bogdan): implement`
        pass

    @classmethod
    def _latest_partition_from_df(cls, df: pd.DataFrame) -> Optional[List[str]]:
        """Hive partitions look like ds={partition name}/ds={partition name}"""
        if not df.empty:
            return [
                partition_str.split("=")[1]
                for partition_str in df.iloc[:, 0].max().split("/")
            ]
        return None

    @classmethod
    def _partition_query(  # pylint: disable=too-many-arguments
        cls,
        table_name: str,
        database: "Database",
        limit: int = 0,
        order_by: Optional[List[Tuple[str, bool]]] = None,
        filters: Optional[Dict[Any, Any]] = None,
    ) -> str:
        return f"SHOW PARTITIONS {table_name}"

    @classmethod
    def select_star(  # pylint: disable=too-many-arguments
        cls,
        database: "Database",
        table_name: str,
        engine: Engine,
        schema: Optional[str] = None,
        limit: int = 100,
        show_cols: bool = False,
        indent: bool = True,
        latest_partition: bool = True,
        cols: Optional[List[Dict[str, Any]]] = None,
    ) -> str:
        return super(  # pylint: disable=bad-super-call
            PrestoEngineSpec, cls
        ).select_star(
            database,
            table_name,
            engine,
            schema,
            limit,
            show_cols,
            indent,
            latest_partition,
            cols,
        )

    @classmethod
    def get_url_for_impersonation(
        cls, url: URL, impersonate_user: bool, username: Optional[str]
    ) -> URL:
        """
        Return a modified URL with the username set.

        :param url: SQLAlchemy URL object
        :param impersonate_user: Flag indicating if impersonation is enabled
        :param username: Effective username
        """
        # Do nothing in the URL object since instead this should modify
        # the configuraiton dictionary. See get_configuration_for_impersonation
        return url

    @classmethod
    def update_impersonation_config(
        cls,
        connect_args: Dict[str, Any],
        uri: str,
        username: Optional[str],
    ) -> None:
        """
        Update a configuration dictionary
        that can set the correct properties for impersonating users
        :param connect_args:
        :param uri: URI string
        :param impersonate_user: Flag indicating if impersonation is enabled
        :param username: Effective username
        :return: None
        """
        url = make_url_safe(uri)
        backend_name = url.get_backend_name()

        # Must be Hive connection, enable impersonation, and set optional param
        # auth=LDAP|KERBEROS
        # this will set hive.server2.proxy.user=$effective_username on connect_args['configuration']
        if backend_name == "hive" and username is not None:
            configuration = connect_args.get("configuration", {})
            configuration["hive.server2.proxy.user"] = username
            connect_args["configuration"] = configuration

    @staticmethod
    def execute(  # type: ignore
        cursor, query: str, async_: bool = False
    ):  # pylint: disable=arguments-differ
        kwargs = {"async": async_}
        cursor.execute(query, **kwargs)

    @classmethod
    @cache_manager.cache.memoize()
    def get_function_names(cls, database: "Database") -> List[str]:
        """
        Get a list of function names that are able to be called on the database.
        Used for SQL Lab autocomplete.

        :param database: The database to get functions for
        :return: A list of function names useable in the database
        """
        df = database.get_df("SHOW FUNCTIONS")
        if cls._show_functions_column in df:
            return df[cls._show_functions_column].tolist()

        columns = df.columns.values.tolist()
        logger.error(
            "Payload from `SHOW FUNCTIONS` has the incorrect format. "
            "Expected column `%s`, found: %s.",
            cls._show_functions_column,
            ", ".join(columns),
            exc_info=True,
        )
        # if the results have a single column, use that
        if len(columns) == 1:
            return df[columns[0]].tolist()

        # otherwise, return no function names to prevent errors
        return []

    @classmethod
    def is_readonly_query(cls, parsed_query: ParsedQuery) -> bool:
        """Pessimistic readonly, 100% sure statement won't mutate anything"""
        return (
            super().is_readonly_query(parsed_query)
            or parsed_query.is_set()
            or parsed_query.is_show()
        )

    @classmethod
    def has_implicit_cancel(cls) -> bool:
        """
        Return True if the live cursor handles the implicit cancelation of the query,
        False otherise.

        :return: Whether the live cursor implicitly cancels the query
        :see: handle_cursor
        """

        return True

相关信息

superset 源码目录

相关文章

superset init 源码

superset ascend 源码

superset athena 源码

superset aurora 源码

superset base 源码

superset bigquery 源码

superset clickhouse 源码

superset cockroachdb 源码

superset crate 源码

superset databricks 源码

0  赞