superset hive 源码
superset hive 代码
文件路径:/superset/db_engine_specs/hive.py
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
import logging
import os
import re
import tempfile
import time
from datetime import datetime
from typing import Any, Dict, List, Optional, Tuple, TYPE_CHECKING
from urllib import parse
import numpy as np
import pandas as pd
import pyarrow as pa
import pyarrow.parquet as pq
from flask import current_app, g
from sqlalchemy import Column, text
from sqlalchemy.engine.base import Engine
from sqlalchemy.engine.reflection import Inspector
from sqlalchemy.engine.url import URL
from sqlalchemy.orm import Session
from sqlalchemy.sql.expression import ColumnClause, Select
from superset.common.db_query_status import QueryStatus
from superset.databases.utils import make_url_safe
from superset.db_engine_specs.base import BaseEngineSpec
from superset.db_engine_specs.presto import PrestoEngineSpec
from superset.exceptions import SupersetException
from superset.extensions import cache_manager
from superset.models.sql_lab import Query
from superset.sql_parse import ParsedQuery, Table
from superset.utils import core as utils
if TYPE_CHECKING:
# prevent circular imports
from superset.models.core import Database
logger = logging.getLogger(__name__)
def upload_to_s3(filename: str, upload_prefix: str, table: Table) -> str:
"""
Upload the file to S3.
:param filename: The file to upload
:param upload_prefix: The S3 prefix
:param table: The table that will be created
:returns: The S3 location of the table
"""
# pylint: disable=import-outside-toplevel
import boto3
from boto3.s3.transfer import TransferConfig
bucket_path = current_app.config["CSV_TO_HIVE_UPLOAD_S3_BUCKET"]
if not bucket_path:
logger.info("No upload bucket specified")
raise Exception(
"No upload bucket specified. You can specify one in the config file."
)
s3 = boto3.client("s3")
location = os.path.join("s3a://", bucket_path, upload_prefix, table.table)
s3.upload_file(
filename,
bucket_path,
os.path.join(upload_prefix, table.table, os.path.basename(filename)),
Config=TransferConfig(use_threads=False), # Threading is broken in Python 3.9.
)
return location
class HiveEngineSpec(PrestoEngineSpec):
"""Reuses PrestoEngineSpec functionality."""
engine = "hive"
engine_name = "Apache Hive"
max_column_name_length = 767
allows_alias_to_source_column = True
allows_hidden_ordeby_agg = False
# When running `SHOW FUNCTIONS`, what is the name of the column with the
# function names?
_show_functions_column = "tab_name"
# pylint: disable=line-too-long
_time_grain_expressions = {
None: "{col}",
"PT1S": "from_unixtime(unix_timestamp({col}), 'yyyy-MM-dd HH:mm:ss')",
"PT1M": "from_unixtime(unix_timestamp({col}), 'yyyy-MM-dd HH:mm:00')",
"PT1H": "from_unixtime(unix_timestamp({col}), 'yyyy-MM-dd HH:00:00')",
"P1D": "from_unixtime(unix_timestamp({col}), 'yyyy-MM-dd 00:00:00')",
"P1W": "date_format(date_sub({col}, CAST(7-from_unixtime(unix_timestamp({col}),'u') as int)), 'yyyy-MM-dd 00:00:00')",
"P1M": "from_unixtime(unix_timestamp({col}), 'yyyy-MM-01 00:00:00')",
"P3M": "date_format(add_months(trunc({col}, 'MM'), -(month({col})-1)%3), 'yyyy-MM-dd 00:00:00')",
"P1Y": "from_unixtime(unix_timestamp({col}), 'yyyy-01-01 00:00:00')",
"P1W/1970-01-03T00:00:00Z": "date_format(date_add({col}, INT(6-from_unixtime(unix_timestamp({col}), 'u'))), 'yyyy-MM-dd 00:00:00')",
"1969-12-28T00:00:00Z/P1W": "date_format(date_add({col}, -INT(from_unixtime(unix_timestamp({col}), 'u'))), 'yyyy-MM-dd 00:00:00')",
}
# Scoping regex at class level to avoid recompiling
# 17/02/07 19:36:38 INFO ql.Driver: Total jobs = 5
jobs_stats_r = re.compile(r".*INFO.*Total jobs = (?P<max_jobs>[0-9]+)")
# 17/02/07 19:37:08 INFO ql.Driver: Launching Job 2 out of 5
launching_job_r = re.compile(
".*INFO.*Launching Job (?P<job_number>[0-9]+) out of " "(?P<max_jobs>[0-9]+)"
)
# 17/02/07 19:36:58 INFO exec.Task: 2017-02-07 19:36:58,152 Stage-18
# map = 0%, reduce = 0%
stage_progress_r = re.compile(
r".*INFO.*Stage-(?P<stage_number>[0-9]+).*"
r"map = (?P<map_progress>[0-9]+)%.*"
r"reduce = (?P<reduce_progress>[0-9]+)%.*"
)
@classmethod
def patch(cls) -> None:
# pylint: disable=import-outside-toplevel
from pyhive import hive
from TCLIService import (
constants as patched_constants,
TCLIService as patched_TCLIService,
ttypes as patched_ttypes,
)
from superset.db_engines import hive as patched_hive
hive.TCLIService = patched_TCLIService
hive.constants = patched_constants
hive.ttypes = patched_ttypes
hive.Cursor.fetch_logs = patched_hive.fetch_logs
@classmethod
def fetch_data(
cls, cursor: Any, limit: Optional[int] = None
) -> List[Tuple[Any, ...]]:
# pylint: disable=import-outside-toplevel
import pyhive
from TCLIService import ttypes
state = cursor.poll()
if state.operationState == ttypes.TOperationState.ERROR_STATE:
raise Exception("Query error", state.errorMessage)
try:
return super().fetch_data(cursor, limit)
except pyhive.exc.ProgrammingError:
return []
@classmethod
def df_to_sql(
cls,
database: "Database",
table: Table,
df: pd.DataFrame,
to_sql_kwargs: Dict[str, Any],
) -> None:
"""
Upload data from a Pandas DataFrame to a database.
The data is stored via the binary Parquet format which is both less problematic
and more performant than a text file. More specifically storing a table as a
CSV text file has severe limitations including the fact that the Hive CSV SerDe
does not support multiline fields.
Note this method does not create metadata for the table.
:param database: The database to upload the data to
:param: table The table to upload the data to
:param df: The dataframe with data to be uploaded
:param to_sql_kwargs: The kwargs to be passed to pandas.DataFrame.to_sql` method
"""
engine = cls.get_engine(database)
if to_sql_kwargs["if_exists"] == "append":
raise SupersetException("Append operation not currently supported")
if to_sql_kwargs["if_exists"] == "fail":
# Ensure table doesn't already exist.
if table.schema:
table_exists = not database.get_df(
f"SHOW TABLES IN {table.schema} LIKE '{table.table}'"
).empty
else:
table_exists = not database.get_df(
f"SHOW TABLES LIKE '{table.table}'"
).empty
if table_exists:
raise SupersetException("Table already exists")
elif to_sql_kwargs["if_exists"] == "replace":
engine.execute(f"DROP TABLE IF EXISTS {str(table)}")
def _get_hive_type(dtype: np.dtype) -> str:
hive_type_by_dtype = {
np.dtype("bool"): "BOOLEAN",
np.dtype("float64"): "DOUBLE",
np.dtype("int64"): "BIGINT",
np.dtype("object"): "STRING",
}
return hive_type_by_dtype.get(dtype, "STRING")
schema_definition = ", ".join(
f"`{name}` {_get_hive_type(dtype)}" for name, dtype in df.dtypes.items()
)
with tempfile.NamedTemporaryFile(
dir=current_app.config["UPLOAD_FOLDER"], suffix=".parquet"
) as file:
pq.write_table(pa.Table.from_pandas(df), where=file.name)
engine.execute(
text(
f"""
CREATE TABLE {str(table)} ({schema_definition})
STORED AS PARQUET
LOCATION :location
"""
),
location=upload_to_s3(
filename=file.name,
upload_prefix=current_app.config[
"CSV_TO_HIVE_UPLOAD_DIRECTORY_FUNC"
](database, g.user, table.schema),
table=table,
),
)
@classmethod
def convert_dttm(
cls, target_type: str, dttm: datetime, db_extra: Optional[Dict[str, Any]] = None
) -> Optional[str]:
tt = target_type.upper()
if tt == utils.TemporalType.DATE:
return f"CAST('{dttm.date().isoformat()}' AS DATE)"
if tt == utils.TemporalType.TIMESTAMP:
return f"""CAST('{dttm
.isoformat(sep=" ", timespec="microseconds")}' AS TIMESTAMP)"""
return None
@classmethod
def adjust_database_uri(
cls, uri: URL, selected_schema: Optional[str] = None
) -> URL:
if selected_schema:
uri = uri.set(database=parse.quote(selected_schema, safe=""))
return uri
@classmethod
def _extract_error_message(cls, ex: Exception) -> str:
msg = str(ex)
match = re.search(r'errorMessage="(.*?)(?<!\\)"', msg)
if match:
msg = match.group(1)
return msg
@classmethod
def progress(cls, log_lines: List[str]) -> int:
total_jobs = 1 # assuming there's at least 1 job
current_job = 1
stages: Dict[int, float] = {}
for line in log_lines:
match = cls.jobs_stats_r.match(line)
if match:
total_jobs = int(match.groupdict()["max_jobs"]) or 1
match = cls.launching_job_r.match(line)
if match:
current_job = int(match.groupdict()["job_number"])
total_jobs = int(match.groupdict()["max_jobs"]) or 1
stages = {}
match = cls.stage_progress_r.match(line)
if match:
stage_number = int(match.groupdict()["stage_number"])
map_progress = int(match.groupdict()["map_progress"])
reduce_progress = int(match.groupdict()["reduce_progress"])
stages[stage_number] = (map_progress + reduce_progress) / 2
logger.info(
"Progress detail: {}, " # pylint: disable=logging-format-interpolation
"current job {}, "
"total jobs: {}".format(stages, current_job, total_jobs)
)
stage_progress = sum(stages.values()) / len(stages.values()) if stages else 0
progress = 100 * (current_job - 1) / total_jobs + stage_progress / total_jobs
return int(progress)
@classmethod
def get_tracking_url_from_logs(cls, log_lines: List[str]) -> Optional[str]:
lkp = "Tracking URL = "
for line in log_lines:
if lkp in line:
return line.split(lkp)[1]
return None
@classmethod
def handle_cursor( # pylint: disable=too-many-locals
cls, cursor: Any, query: Query, session: Session
) -> None:
"""Updates progress information"""
# pylint: disable=import-outside-toplevel
from pyhive import hive
unfinished_states = (
hive.ttypes.TOperationState.INITIALIZED_STATE,
hive.ttypes.TOperationState.RUNNING_STATE,
)
polled = cursor.poll()
last_log_line = 0
tracking_url = None
job_id = None
query_id = query.id
while polled.operationState in unfinished_states:
# Queries don't terminate when user clicks the STOP button on SQL LAB.
# Refresh session so that the `query.status` modified in stop_query in
# views/core.py is reflected here.
session.refresh(query)
query = session.query(type(query)).filter_by(id=query_id).one()
if query.status == QueryStatus.STOPPED:
cursor.cancel()
break
try:
log = cursor.fetch_logs() or ""
except Exception: # pylint: disable=broad-except
logger.warning("Call to GetLog() failed")
log = ""
if log:
log_lines = log.splitlines()
progress = cls.progress(log_lines)
logger.info(
"Query %s: Progress total: %s", str(query_id), str(progress)
)
needs_commit = False
if progress > query.progress:
query.progress = progress
needs_commit = True
if not tracking_url:
tracking_url = cls.get_tracking_url_from_logs(log_lines)
if tracking_url:
job_id = tracking_url.split("/")[-2]
logger.info(
"Query %s: Found the tracking url: %s",
str(query_id),
tracking_url,
)
query.tracking_url = tracking_url
logger.info("Query %s: Job id: %s", str(query_id), str(job_id))
needs_commit = True
if job_id and len(log_lines) > last_log_line:
# Wait for job id before logging things out
# this allows for prefixing all log lines and becoming
# searchable in something like Kibana
for l in log_lines[last_log_line:]:
logger.info("Query %s: [%s] %s", str(query_id), str(job_id), l)
last_log_line = len(log_lines)
if needs_commit:
session.commit()
time.sleep(current_app.config["HIVE_POLL_INTERVAL"])
polled = cursor.poll()
@classmethod
def get_columns(
cls, inspector: Inspector, table_name: str, schema: Optional[str]
) -> List[Dict[str, Any]]:
return inspector.get_columns(table_name, schema)
@classmethod
def where_latest_partition( # pylint: disable=too-many-arguments
cls,
table_name: str,
schema: Optional[str],
database: "Database",
query: Select,
columns: Optional[List[Dict[str, str]]] = None,
) -> Optional[Select]:
try:
col_names, values = cls.latest_partition(
table_name, schema, database, show_first=True
)
except Exception: # pylint: disable=broad-except
# table is not partitioned
return None
if values is not None and columns is not None:
for col_name, value in zip(col_names, values):
for clm in columns:
if clm.get("name") == col_name:
query = query.where(Column(col_name) == value)
return query
return None
@classmethod
def _get_fields(cls, cols: List[Dict[str, Any]]) -> List[ColumnClause]:
return BaseEngineSpec._get_fields(cols) # pylint: disable=protected-access
@classmethod
def latest_sub_partition(
cls, table_name: str, schema: Optional[str], database: "Database", **kwargs: Any
) -> str:
# TODO(bogdan): implement`
pass
@classmethod
def _latest_partition_from_df(cls, df: pd.DataFrame) -> Optional[List[str]]:
"""Hive partitions look like ds={partition name}/ds={partition name}"""
if not df.empty:
return [
partition_str.split("=")[1]
for partition_str in df.iloc[:, 0].max().split("/")
]
return None
@classmethod
def _partition_query( # pylint: disable=too-many-arguments
cls,
table_name: str,
database: "Database",
limit: int = 0,
order_by: Optional[List[Tuple[str, bool]]] = None,
filters: Optional[Dict[Any, Any]] = None,
) -> str:
return f"SHOW PARTITIONS {table_name}"
@classmethod
def select_star( # pylint: disable=too-many-arguments
cls,
database: "Database",
table_name: str,
engine: Engine,
schema: Optional[str] = None,
limit: int = 100,
show_cols: bool = False,
indent: bool = True,
latest_partition: bool = True,
cols: Optional[List[Dict[str, Any]]] = None,
) -> str:
return super( # pylint: disable=bad-super-call
PrestoEngineSpec, cls
).select_star(
database,
table_name,
engine,
schema,
limit,
show_cols,
indent,
latest_partition,
cols,
)
@classmethod
def get_url_for_impersonation(
cls, url: URL, impersonate_user: bool, username: Optional[str]
) -> URL:
"""
Return a modified URL with the username set.
:param url: SQLAlchemy URL object
:param impersonate_user: Flag indicating if impersonation is enabled
:param username: Effective username
"""
# Do nothing in the URL object since instead this should modify
# the configuraiton dictionary. See get_configuration_for_impersonation
return url
@classmethod
def update_impersonation_config(
cls,
connect_args: Dict[str, Any],
uri: str,
username: Optional[str],
) -> None:
"""
Update a configuration dictionary
that can set the correct properties for impersonating users
:param connect_args:
:param uri: URI string
:param impersonate_user: Flag indicating if impersonation is enabled
:param username: Effective username
:return: None
"""
url = make_url_safe(uri)
backend_name = url.get_backend_name()
# Must be Hive connection, enable impersonation, and set optional param
# auth=LDAP|KERBEROS
# this will set hive.server2.proxy.user=$effective_username on connect_args['configuration']
if backend_name == "hive" and username is not None:
configuration = connect_args.get("configuration", {})
configuration["hive.server2.proxy.user"] = username
connect_args["configuration"] = configuration
@staticmethod
def execute( # type: ignore
cursor, query: str, async_: bool = False
): # pylint: disable=arguments-differ
kwargs = {"async": async_}
cursor.execute(query, **kwargs)
@classmethod
@cache_manager.cache.memoize()
def get_function_names(cls, database: "Database") -> List[str]:
"""
Get a list of function names that are able to be called on the database.
Used for SQL Lab autocomplete.
:param database: The database to get functions for
:return: A list of function names useable in the database
"""
df = database.get_df("SHOW FUNCTIONS")
if cls._show_functions_column in df:
return df[cls._show_functions_column].tolist()
columns = df.columns.values.tolist()
logger.error(
"Payload from `SHOW FUNCTIONS` has the incorrect format. "
"Expected column `%s`, found: %s.",
cls._show_functions_column,
", ".join(columns),
exc_info=True,
)
# if the results have a single column, use that
if len(columns) == 1:
return df[columns[0]].tolist()
# otherwise, return no function names to prevent errors
return []
@classmethod
def is_readonly_query(cls, parsed_query: ParsedQuery) -> bool:
"""Pessimistic readonly, 100% sure statement won't mutate anything"""
return (
super().is_readonly_query(parsed_query)
or parsed_query.is_set()
or parsed_query.is_show()
)
@classmethod
def has_implicit_cancel(cls) -> bool:
"""
Return True if the live cursor handles the implicit cancelation of the query,
False otherise.
:return: Whether the live cursor implicitly cancels the query
:see: handle_cursor
"""
return True
相关信息
相关文章
0
赞
热门推荐
-
2、 - 优质文章
-
3、 gate.io
-
8、 golang
-
9、 openharmony
-
10、 Vue中input框自动聚焦