superset bigquery 源码

  • 2022-10-20
  • 浏览 (418)

superset bigquery 代码

文件路径:/superset/db_engine_specs/bigquery.py

# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.
import json
import re
import urllib
from datetime import datetime
from typing import Any, Dict, List, Optional, Pattern, Tuple, Type, TYPE_CHECKING

import pandas as pd
from apispec import APISpec
from apispec.ext.marshmallow import MarshmallowPlugin
from flask_babel import gettext as __
from marshmallow import fields, Schema
from marshmallow.exceptions import ValidationError
from sqlalchemy import column
from sqlalchemy.engine.base import Engine
from sqlalchemy.sql import sqltypes
from typing_extensions import TypedDict

from superset.constants import PASSWORD_MASK
from superset.databases.schemas import encrypted_field_properties, EncryptedString
from superset.databases.utils import make_url_safe
from superset.db_engine_specs.base import BaseEngineSpec, BasicPropertiesType
from superset.db_engine_specs.exceptions import SupersetDBAPIDisconnectionError
from superset.errors import SupersetError, SupersetErrorType
from superset.sql_parse import Table
from superset.utils import core as utils
from superset.utils.hashing import md5_sha_from_str

if TYPE_CHECKING:
    from superset.models.core import Database  # pragma: no cover


CONNECTION_DATABASE_PERMISSIONS_REGEX = re.compile(
    "Access Denied: Project User does not have bigquery.jobs.create "
    + "permission in project (?P<project>.+?)"
)

TABLE_DOES_NOT_EXIST_REGEX = re.compile(
    'Table name "(?P<table>.*?)" missing dataset while no default '
    "dataset is set in the request"
)

COLUMN_DOES_NOT_EXIST_REGEX = re.compile(
    r"Unrecognized name: (?P<column>.*?) at \[(?P<location>.+?)\]"
)

SCHEMA_DOES_NOT_EXIST_REGEX = re.compile(
    r"bigquery error: 404 Not found: Dataset (?P<dataset>.*?):"
    r"(?P<schema>.*?) was not found in location"
)

SYNTAX_ERROR_REGEX = re.compile(
    'Syntax error: Expected end of input but got identifier "(?P<syntax_error>.+?)"'
)

ma_plugin = MarshmallowPlugin()


class BigQueryParametersSchema(Schema):
    credentials_info = EncryptedString(
        required=False,
        description="Contents of BigQuery JSON credentials.",
    )
    query = fields.Dict(required=False)


class BigQueryParametersType(TypedDict):
    credentials_info: Dict[str, Any]
    query: Dict[str, Any]


class BigQueryEngineSpec(BaseEngineSpec):
    """Engine spec for Google's BigQuery

    As contributed by @mxmzdlv on issue #945"""

    engine = "bigquery"
    engine_name = "Google BigQuery"
    max_column_name_length = 128

    parameters_schema = BigQueryParametersSchema()
    default_driver = "bigquery"
    sqlalchemy_uri_placeholder = "bigquery://{project_id}"

    # BigQuery doesn't maintain context when running multiple statements in the
    # same cursor, so we need to run all statements at once
    run_multiple_statements_as_one = True

    allows_hidden_cc_in_orderby = True

    """
    https://www.python.org/dev/peps/pep-0249/#arraysize
    raw_connections bypass the pybigquery query execution context and deal with
    raw dbapi connection directly.
    If this value is not set, the default value is set to 1, as described here,
    https://googlecloudplatform.github.io/google-cloud-python/latest/_modules/google/cloud/bigquery/dbapi/cursor.html#Cursor

    The default value of 5000 is derived from the pybigquery.
    https://github.com/mxmzdlv/pybigquery/blob/d214bb089ca0807ca9aaa6ce4d5a01172d40264e/pybigquery/sqlalchemy_bigquery.py#L102
    """
    arraysize = 5000

    _date_trunc_functions = {
        "DATE": "DATE_TRUNC",
        "DATETIME": "DATETIME_TRUNC",
        "TIME": "TIME_TRUNC",
        "TIMESTAMP": "TIMESTAMP_TRUNC",
    }

    _time_grain_expressions = {
        None: "{col}",
        "PT1S": "CAST(TIMESTAMP_SECONDS("
        "UNIX_SECONDS(CAST({col} AS TIMESTAMP))"
        ") AS {type})",
        "PT1M": "CAST(TIMESTAMP_SECONDS("
        "60 * DIV(UNIX_SECONDS(CAST({col} AS TIMESTAMP)), 60)"
        ") AS {type})",
        "PT5M": "CAST(TIMESTAMP_SECONDS("
        "5*60 * DIV(UNIX_SECONDS(CAST({col} AS TIMESTAMP)), 5*60)"
        ") AS {type})",
        "PT10M": "CAST(TIMESTAMP_SECONDS("
        "10*60 * DIV(UNIX_SECONDS(CAST({col} AS TIMESTAMP)), 10*60)"
        ") AS {type})",
        "PT15M": "CAST(TIMESTAMP_SECONDS("
        "15*60 * DIV(UNIX_SECONDS(CAST({col} AS TIMESTAMP)), 15*60)"
        ") AS {type})",
        "PT30M": "CAST(TIMESTAMP_SECONDS("
        "30*60 * DIV(UNIX_SECONDS(CAST({col} AS TIMESTAMP)), 30*60)"
        ") AS {type})",
        "PT1H": "{func}({col}, HOUR)",
        "P1D": "{func}({col}, DAY)",
        "P1W": "{func}({col}, WEEK)",
        "1969-12-29T00:00:00Z/P1W": "{func}({col}, ISOWEEK)",
        "P1M": "{func}({col}, MONTH)",
        "P3M": "{func}({col}, QUARTER)",
        "P1Y": "{func}({col}, YEAR)",
    }

    custom_errors: Dict[Pattern[str], Tuple[str, SupersetErrorType, Dict[str, Any]]] = {
        CONNECTION_DATABASE_PERMISSIONS_REGEX: (
            __(
                "We were unable to connect to your database. Please "
                "confirm that your service account has the Viewer "
                "and Job User roles on the project."
            ),
            SupersetErrorType.CONNECTION_DATABASE_PERMISSIONS_ERROR,
            {},
        ),
        TABLE_DOES_NOT_EXIST_REGEX: (
            __(
                'The table "%(table)s" does not exist. '
                "A valid table must be used to run this query.",
            ),
            SupersetErrorType.TABLE_DOES_NOT_EXIST_ERROR,
            {},
        ),
        COLUMN_DOES_NOT_EXIST_REGEX: (
            __('We can\'t seem to resolve column "%(column)s" at line %(location)s.'),
            SupersetErrorType.COLUMN_DOES_NOT_EXIST_ERROR,
            {},
        ),
        SCHEMA_DOES_NOT_EXIST_REGEX: (
            __(
                'The schema "%(schema)s" does not exist. '
                "A valid schema must be used to run this query."
            ),
            SupersetErrorType.SCHEMA_DOES_NOT_EXIST_ERROR,
            {},
        ),
        SYNTAX_ERROR_REGEX: (
            __(
                "Please check your query for syntax errors at or near "
                '"%(syntax_error)s". Then, try running your query again.'
            ),
            SupersetErrorType.SYNTAX_ERROR,
            {},
        ),
    }

    @classmethod
    def convert_dttm(
        cls, target_type: str, dttm: datetime, db_extra: Optional[Dict[str, Any]] = None
    ) -> Optional[str]:
        tt = target_type.upper()
        if tt == utils.TemporalType.DATE:
            return f"CAST('{dttm.date().isoformat()}' AS DATE)"
        if tt == utils.TemporalType.DATETIME:
            return f"""CAST('{dttm.isoformat(timespec="microseconds")}' AS DATETIME)"""
        if tt == utils.TemporalType.TIME:
            return f"""CAST('{dttm.strftime("%H:%M:%S.%f")}' AS TIME)"""
        if tt == utils.TemporalType.TIMESTAMP:
            return f"""CAST('{dttm.isoformat(timespec="microseconds")}' AS TIMESTAMP)"""
        return None

    @classmethod
    def fetch_data(
        cls, cursor: Any, limit: Optional[int] = None
    ) -> List[Tuple[Any, ...]]:
        data = super().fetch_data(cursor, limit)
        # Support type BigQuery Row, introduced here PR #4071
        # google.cloud.bigquery.table.Row
        if data and type(data[0]).__name__ == "Row":
            data = [r.values() for r in data]  # type: ignore
        return data

    @staticmethod
    def _mutate_label(label: str) -> str:
        """
        BigQuery field_name should start with a letter or underscore and contain only
        alphanumeric characters. Labels that start with a number are prefixed with an
        underscore. Any unsupported characters are replaced with underscores and an
        md5 hash is added to the end of the label to avoid possible collisions.

        :param label: Expected expression label
        :return: Conditionally mutated label
        """
        label_hashed = "_" + md5_sha_from_str(label)

        # if label starts with number, add underscore as first character
        label_mutated = "_" + label if re.match(r"^\d", label) else label

        # replace non-alphanumeric characters with underscores
        label_mutated = re.sub(r"[^\w]+", "_", label_mutated)
        if label_mutated != label:
            # add first 5 chars from md5 hash to label to avoid possible collisions
            label_mutated += label_hashed[:6]

        return label_mutated

    @classmethod
    def _truncate_label(cls, label: str) -> str:
        """BigQuery requires column names start with either a letter or
        underscore. To make sure this is always the case, an underscore is prefixed
        to the md5 hash of the original label.

        :param label: expected expression label
        :return: truncated label
        """
        return "_" + md5_sha_from_str(label)

    @classmethod
    def normalize_indexes(cls, indexes: List[Dict[str, Any]]) -> List[Dict[str, Any]]:
        """
        Normalizes indexes for more consistency across db engines

        :param indexes: Raw indexes as returned by SQLAlchemy
        :return: cleaner, more aligned index definition
        """
        normalized_idxs = []
        # Fixing a bug/behavior observed in pybigquery==0.4.15 where
        # the index's `column_names` == [None]
        # Here we're returning only non-None indexes
        for ix in indexes:
            column_names = ix.get("column_names") or []
            ix["column_names"] = [col for col in column_names if col is not None]
            if ix["column_names"]:
                normalized_idxs.append(ix)
        return normalized_idxs

    @classmethod
    def extra_table_metadata(
        cls, database: "Database", table_name: str, schema_name: Optional[str]
    ) -> Dict[str, Any]:
        indexes = database.get_indexes(table_name, schema_name)
        if not indexes:
            return {}
        partitions_columns = [
            index.get("column_names", [])
            for index in indexes
            if index.get("name") == "partition"
        ]
        cluster_columns = [
            index.get("column_names", [])
            for index in indexes
            if index.get("name") == "clustering"
        ]
        return {
            "partitions": {"cols": partitions_columns},
            "clustering": {"cols": cluster_columns},
        }

    @classmethod
    def epoch_to_dttm(cls) -> str:
        return "TIMESTAMP_SECONDS({col})"

    @classmethod
    def epoch_ms_to_dttm(cls) -> str:
        return "TIMESTAMP_MILLIS({col})"

    @classmethod
    def df_to_sql(
        cls,
        database: "Database",
        table: Table,
        df: pd.DataFrame,
        to_sql_kwargs: Dict[str, Any],
    ) -> None:
        """
        Upload data from a Pandas DataFrame to a database.

        Calls `pandas_gbq.DataFrame.to_gbq` which requires `pandas_gbq` to be installed.

        Note this method does not create metadata for the table.

        :param database: The database to upload the data to
        :param table: The table to upload the data to
        :param df: The dataframe with data to be uploaded
        :param to_sql_kwargs: The kwargs to be passed to pandas.DataFrame.to_sql` method
        """

        try:
            # pylint: disable=import-outside-toplevel
            import pandas_gbq
            from google.oauth2 import service_account
        except ImportError as ex:
            raise Exception(
                "Could not import libraries `pandas_gbq` or `google.oauth2`, which are "
                "required to be installed in your environment in order "
                "to upload data to BigQuery"
            ) from ex

        if not table.schema:
            raise Exception("The table schema must be defined")

        engine = cls.get_engine(database)
        to_gbq_kwargs = {"destination_table": str(table), "project_id": engine.url.host}

        # Add credentials if they are set on the SQLAlchemy dialect.
        creds = engine.dialect.credentials_info

        if creds:
            to_gbq_kwargs[
                "credentials"
            ] = service_account.Credentials.from_service_account_info(creds)

        # Only pass through supported kwargs.
        supported_kwarg_keys = {"if_exists"}

        for key in supported_kwarg_keys:
            if key in to_sql_kwargs:
                to_gbq_kwargs[key] = to_sql_kwargs[key]

        pandas_gbq.to_gbq(df, **to_gbq_kwargs)

    @classmethod
    def build_sqlalchemy_uri(
        cls,
        parameters: BigQueryParametersType,
        encrypted_extra: Optional[Dict[str, Any]] = None,
    ) -> str:
        query = parameters.get("query", {})
        query_params = urllib.parse.urlencode(query)

        if encrypted_extra:
            credentials_info = encrypted_extra.get("credentials_info")
            if isinstance(credentials_info, str):
                credentials_info = json.loads(credentials_info)
            project_id = credentials_info.get("project_id")
        if not encrypted_extra:
            raise ValidationError("Missing service credentials")

        if project_id:
            return f"{cls.default_driver}://{project_id}/?{query_params}"

        raise ValidationError("Invalid service credentials")

    @classmethod
    def get_parameters_from_uri(
        cls,
        uri: str,
        encrypted_extra: Optional[Dict[str, Any]] = None,
    ) -> Any:
        value = make_url_safe(uri)

        # Building parameters from encrypted_extra and uri
        if encrypted_extra:
            # ``value.query`` needs to be explicitly converted into a dict (from an
            # ``immutabledict``) so that it can be JSON serialized
            return {**encrypted_extra, "query": dict(value.query)}

        raise ValidationError("Invalid service credentials")

    @classmethod
    def mask_encrypted_extra(cls, encrypted_extra: Optional[str]) -> Optional[str]:
        if encrypted_extra is None:
            return encrypted_extra

        try:
            config = json.loads(encrypted_extra)
        except (json.JSONDecodeError, TypeError):
            return encrypted_extra

        try:
            config["credentials_info"]["private_key"] = PASSWORD_MASK
        except KeyError:
            pass

        return json.dumps(config)

    @classmethod
    def unmask_encrypted_extra(
        cls, old: Optional[str], new: Optional[str]
    ) -> Optional[str]:
        """
        Reuse ``private_key`` if available and unchanged.
        """
        if old is None or new is None:
            return new

        try:
            old_config = json.loads(old)
            new_config = json.loads(new)
        except (TypeError, json.JSONDecodeError):
            return new

        if "credentials_info" not in new_config:
            return new

        if "private_key" not in new_config["credentials_info"]:
            return new

        if new_config["credentials_info"]["private_key"] == PASSWORD_MASK:
            new_config["credentials_info"]["private_key"] = old_config[
                "credentials_info"
            ]["private_key"]

        return json.dumps(new_config)

    @classmethod
    def get_dbapi_exception_mapping(cls) -> Dict[Type[Exception], Type[Exception]]:
        # pylint: disable=import-outside-toplevel
        from google.auth.exceptions import DefaultCredentialsError

        return {DefaultCredentialsError: SupersetDBAPIDisconnectionError}

    @classmethod
    def validate_parameters(
        cls,
        properties: BasicPropertiesType,  # pylint: disable=unused-argument
    ) -> List[SupersetError]:
        return []

    @classmethod
    def parameters_json_schema(cls) -> Any:
        """
        Return configuration parameters as OpenAPI.
        """
        if not cls.parameters_schema:
            return None

        spec = APISpec(
            title="Database Parameters",
            version="1.0.0",
            openapi_version="3.0.0",
            plugins=[ma_plugin],
        )

        ma_plugin.init_spec(spec)
        ma_plugin.converter.add_attribute_function(encrypted_field_properties)
        spec.components.schema(cls.__name__, schema=cls.parameters_schema)
        return spec.to_dict()["components"]["schemas"][cls.__name__]

    @classmethod
    def select_star(  # pylint: disable=too-many-arguments
        cls,
        database: "Database",
        table_name: str,
        engine: Engine,
        schema: Optional[str] = None,
        limit: int = 100,
        show_cols: bool = False,
        indent: bool = True,
        latest_partition: bool = True,
        cols: Optional[List[Dict[str, Any]]] = None,
    ) -> str:
        """
        Remove array structures from `SELECT *`.

        BigQuery supports structures and arrays of structures, eg:

            author STRUCT<name STRING, email STRING>
            trailer ARRAY<STRUCT<key STRING, value STRING>>

        When loading metadata for a table each key in the struct is displayed as a
        separate pseudo-column, eg:

            - author
            - author.name
            - author.email
            - trailer
            - trailer.key
            - trailer.value

        When generating the `SELECT *` statement we want to remove any keys from
        structs inside an array, since selecting them results in an error. The correct
        select statement should look like this:

            SELECT
              `author`,
              `author`.`name`,
              `author`.`email`,
              `trailer`
            FROM
              table

        Selecting `trailer.key` or `trailer.value` results in an error, as opposed to
        selecting `author.name`, since they are keys in a structure inside an array.

        This method removes any array pseudo-columns.
        """
        if cols:
            # For arrays of structs, remove the child columns, otherwise the query
            # will fail.
            array_prefixes = {
                col["name"] for col in cols if isinstance(col["type"], sqltypes.ARRAY)
            }
            cols = [
                col
                for col in cols
                if "." not in col["name"]
                or col["name"].split(".")[0] not in array_prefixes
            ]

        return super().select_star(
            database,
            table_name,
            engine,
            schema,
            limit,
            show_cols,
            indent,
            latest_partition,
            cols,
        )

    @classmethod
    def _get_fields(cls, cols: List[Dict[str, Any]]) -> List[Any]:
        """
        Label columns using their fully qualified name.

        BigQuery supports columns of type `struct`, which are basically dictionaries.
        When loading metadata for a table with struct columns, each key in the struct
        is displayed as a separate pseudo-column, eg:

            author STRUCT<name STRING, email STRING>

        Will be shown as 3 columns:

            - author
            - author.name
            - author.email

        If we select those fields:

            SELECT `author`, `author`.`name`, `author`.`email` FROM table

        The resulting columns will be called "author", "name", and "email", This may
        result in a clash with other columns. To prevent that, we explicitly label
        the columns using their fully qualified name, so we end up with "author",
        "author__name" and "author__email", respectively.
        """
        return [column(c["name"]).label(c["name"].replace(".", "__")) for c in cols]

相关信息

superset 源码目录

相关文章

superset init 源码

superset ascend 源码

superset athena 源码

superset aurora 源码

superset base 源码

superset clickhouse 源码

superset cockroachdb 源码

superset crate 源码

superset databricks 源码

superset db2 源码

0  赞