spark HadoopFSUtils 源码

  • 2022-10-20
  • 浏览 (305)

spark HadoopFSUtils 代码

文件路径:/core/src/main/scala/org/apache/spark/util/HadoopFSUtils.scala

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.spark.util

import java.io.FileNotFoundException

import scala.collection.mutable

import org.apache.hadoop.conf.Configuration
import org.apache.hadoop.fs._
import org.apache.hadoop.fs.viewfs.ViewFileSystem
import org.apache.hadoop.hdfs.DistributedFileSystem

import org.apache.spark._
import org.apache.spark.internal.Logging
import org.apache.spark.metrics.source.HiveCatalogMetrics

/**
 * Utility functions to simplify and speed-up file listing.
 */
private[spark] object HadoopFSUtils extends Logging {
  /**
   * Lists a collection of paths recursively. Picks the listing strategy adaptively depending
   * on the number of paths to list.
   *
   * This may only be called on the driver.
   *
   * @param sc Spark context used to run parallel listing.
   * @param paths Input paths to list
   * @param hadoopConf Hadoop configuration
   * @param filter Path filter used to exclude leaf files from result
   * @param ignoreMissingFiles Ignore missing files that happen during recursive listing
   *                           (e.g., due to race conditions)
   * @param ignoreLocality Whether to fetch data locality info when listing leaf files. If false,
   *                       this will return `FileStatus` without `BlockLocation` info.
   * @param parallelismThreshold The threshold to enable parallelism. If the number of input paths
   *                             is smaller than this value, this will fallback to use
   *                             sequential listing.
   * @param parallelismMax The maximum parallelism for listing. If the number of input paths is
   *                       larger than this value, parallelism will be throttled to this value
   *                       to avoid generating too many tasks.
   * @return for each input path, the set of discovered files for the path
   */
  def parallelListLeafFiles(
    sc: SparkContext,
    paths: Seq[Path],
    hadoopConf: Configuration,
    filter: PathFilter,
    ignoreMissingFiles: Boolean,
    ignoreLocality: Boolean,
    parallelismThreshold: Int,
    parallelismMax: Int): Seq[(Path, Seq[FileStatus])] = {
    parallelListLeafFilesInternal(sc, paths, hadoopConf, filter, isRootLevel = true,
      ignoreMissingFiles, ignoreLocality, parallelismThreshold, parallelismMax)
  }

  private def parallelListLeafFilesInternal(
      sc: SparkContext,
      paths: Seq[Path],
      hadoopConf: Configuration,
      filter: PathFilter,
      isRootLevel: Boolean,
      ignoreMissingFiles: Boolean,
      ignoreLocality: Boolean,
      parallelismThreshold: Int,
      parallelismMax: Int): Seq[(Path, Seq[FileStatus])] = {

    // Short-circuits parallel listing when serial listing is likely to be faster.
    if (paths.size <= parallelismThreshold) {
      return paths.map { path =>
        val leafFiles = listLeafFiles(
          path,
          hadoopConf,
          filter,
          Some(sc),
          ignoreMissingFiles = ignoreMissingFiles,
          ignoreLocality = ignoreLocality,
          isRootPath = isRootLevel,
          parallelismThreshold = parallelismThreshold,
          parallelismMax = parallelismMax)
        (path, leafFiles)
      }
    }

    logInfo(s"Listing leaf files and directories in parallel under ${paths.length} paths." +
      s" The first several paths are: ${paths.take(10).mkString(", ")}.")
    HiveCatalogMetrics.incrementParallelListingJobCount(1)

    val serializableConfiguration = new SerializableConfiguration(hadoopConf)
    val serializedPaths = paths.map(_.toString)

    // Set the number of parallelism to prevent following file listing from generating many tasks
    // in case of large #defaultParallelism.
    val numParallelism = Math.min(paths.size, parallelismMax)

    val previousJobDescription = sc.getLocalProperty(SparkContext.SPARK_JOB_DESCRIPTION)
    val statusMap = try {
      val description = paths.size match {
        case 0 =>
          "Listing leaf files and directories 0 paths"
        case 1 =>
          s"Listing leaf files and directories for 1 path:<br/>${paths(0)}"
        case s =>
          s"Listing leaf files and directories for $s paths:<br/>${paths(0)}, ..."
      }
      sc.setJobDescription(description)
      sc
        .parallelize(serializedPaths, numParallelism)
        .mapPartitions { pathStrings =>
          val hadoopConf = serializableConfiguration.value
          pathStrings.map(new Path(_)).toSeq.map { path =>
            val leafFiles = listLeafFiles(
              path = path,
              hadoopConf = hadoopConf,
              filter = filter,
              contextOpt = None, // Can't execute parallel scans on workers
              ignoreMissingFiles = ignoreMissingFiles,
              ignoreLocality = ignoreLocality,
              isRootPath = isRootLevel,
              parallelismThreshold = Int.MaxValue,
              parallelismMax = 0)
            (path, leafFiles)
          }.iterator
        }.map { case (path, statuses) =>
            val serializableStatuses = statuses.map { status =>
              // Turn FileStatus into SerializableFileStatus so we can send it back to the driver
              val blockLocations = status match {
                case f: LocatedFileStatus =>
                  f.getBlockLocations.map { loc =>
                    SerializableBlockLocation(
                      loc.getNames,
                      loc.getHosts,
                      loc.getOffset,
                      loc.getLength)
                  }

                case _ =>
                  Array.empty[SerializableBlockLocation]
              }

              SerializableFileStatus(
                status.getPath.toString,
                status.getLen,
                status.isDirectory,
                status.getReplication,
                status.getBlockSize,
                status.getModificationTime,
                status.getAccessTime,
                blockLocations)
            }
            (path.toString, serializableStatuses)
        }.collect()
    } finally {
      sc.setJobDescription(previousJobDescription)
    }

    // turn SerializableFileStatus back to Status
    statusMap.map { case (path, serializableStatuses) =>
      val statuses = serializableStatuses.map { f =>
        val blockLocations = f.blockLocations.map { loc =>
          new BlockLocation(loc.names, loc.hosts, loc.offset, loc.length)
        }
        new LocatedFileStatus(
          new FileStatus(
            f.length, f.isDir, f.blockReplication, f.blockSize, f.modificationTime,
            new Path(f.path)),
          blockLocations)
      }
      (new Path(path), statuses)
    }
  }

  // scalastyle:off argcount
  /**
   * Lists a single filesystem path recursively. If a `SparkContext` object is specified, this
   * function may launch Spark jobs to parallelize listing based on `parallelismThreshold`.
   *
   * If sessionOpt is None, this may be called on executors.
   *
   * @return all children of path that match the specified filter.
   */
  private def listLeafFiles(
      path: Path,
      hadoopConf: Configuration,
      filter: PathFilter,
      contextOpt: Option[SparkContext],
      ignoreMissingFiles: Boolean,
      ignoreLocality: Boolean,
      isRootPath: Boolean,
      parallelismThreshold: Int,
      parallelismMax: Int): Seq[FileStatus] = {

    logTrace(s"Listing $path")
    val fs = path.getFileSystem(hadoopConf)

    // Note that statuses only include FileStatus for the files and dirs directly under path,
    // and does not include anything else recursively.
    val statuses: Array[FileStatus] = try {
      fs match {
        // DistributedFileSystem overrides listLocatedStatus to make 1 single call to namenode
        // to retrieve the file status with the file block location. The reason to still fallback
        // to listStatus is because the default implementation would potentially throw a
        // FileNotFoundException which is better handled by doing the lookups manually below.
        case (_: DistributedFileSystem | _: ViewFileSystem) if !ignoreLocality =>
          val remoteIter = fs.listLocatedStatus(path)
          new Iterator[LocatedFileStatus]() {
            def next(): LocatedFileStatus = remoteIter.next
            def hasNext(): Boolean = remoteIter.hasNext
          }.toArray
        case _ => fs.listStatus(path)
      }
    } catch {
      // If we are listing a root path for SQL (e.g. a top level directory of a table), we need to
      // ignore FileNotFoundExceptions during this root level of the listing because
      //
      //  (a) certain code paths might construct an InMemoryFileIndex with root paths that
      //      might not exist (i.e. not all callers are guaranteed to have checked
      //      path existence prior to constructing InMemoryFileIndex) and,
      //  (b) we need to ignore deleted root paths during REFRESH TABLE, otherwise we break
      //      existing behavior and break the ability drop SessionCatalog tables when tables'
      //      root directories have been deleted (which breaks a number of Spark's own tests).
      //
      // If we are NOT listing a root path then a FileNotFoundException here means that the
      // directory was present in a previous level of file listing but is absent in this
      // listing, likely indicating a race condition (e.g. concurrent table overwrite or S3
      // list inconsistency).
      //
      // The trade-off in supporting existing behaviors / use-cases is that we won't be
      // able to detect race conditions involving root paths being deleted during
      // InMemoryFileIndex construction. However, it's still a net improvement to detect and
      // fail-fast on the non-root cases. For more info see the SPARK-27676 review discussion.
      case _: FileNotFoundException if isRootPath || ignoreMissingFiles =>
        logWarning(s"The directory $path was not found. Was it deleted very recently?")
        Array.empty[FileStatus]
    }

    val filteredStatuses =
      statuses.filterNot(status => shouldFilterOutPathName(status.getPath.getName))

    val allLeafStatuses = {
      val (dirs, topLevelFiles) = filteredStatuses.partition(_.isDirectory)
      val filteredNestedFiles: Seq[FileStatus] = contextOpt match {
        case Some(context) if dirs.size > parallelismThreshold =>
          parallelListLeafFilesInternal(
            context,
            dirs.map(_.getPath),
            hadoopConf = hadoopConf,
            filter = filter,
            isRootLevel = false,
            ignoreMissingFiles = ignoreMissingFiles,
            ignoreLocality = ignoreLocality,
            parallelismThreshold = parallelismThreshold,
            parallelismMax = parallelismMax
          ).flatMap(_._2)
        case _ =>
          dirs.flatMap { dir =>
            listLeafFiles(
              path = dir.getPath,
              hadoopConf = hadoopConf,
              filter = filter,
              contextOpt = contextOpt,
              ignoreMissingFiles = ignoreMissingFiles,
              ignoreLocality = ignoreLocality,
              isRootPath = false,
              parallelismThreshold = parallelismThreshold,
              parallelismMax = parallelismMax)
          }
      }
      val filteredTopLevelFiles = if (filter != null) {
        topLevelFiles.filter(f => filter.accept(f.getPath))
      } else {
        topLevelFiles
      }
      filteredTopLevelFiles ++ filteredNestedFiles
    }

    val missingFiles = mutable.ArrayBuffer.empty[String]
    val resolvedLeafStatuses = allLeafStatuses.flatMap {
      case f: LocatedFileStatus =>
        Some(f)

      // NOTE:
      //
      // - Although S3/S3A/S3N file system can be quite slow for remote file metadata
      //   operations, calling `getFileBlockLocations` does no harm here since these file system
      //   implementations don't actually issue RPC for this method.
      //
      // - Here we are calling `getFileBlockLocations` in a sequential manner, but it should not
      //   be a big deal since we always use to `parallelListLeafFiles` when the number of
      //   paths exceeds threshold.
      case f if !ignoreLocality =>
        // The other constructor of LocatedFileStatus will call FileStatus.getPermission(),
        // which is very slow on some file system (RawLocalFileSystem, which is launch a
        // subprocess and parse the stdout).
        try {
          val locations = fs.getFileBlockLocations(f, 0, f.getLen).map { loc =>
            // Store BlockLocation objects to consume less memory
            if (loc.getClass == classOf[BlockLocation]) {
              loc
            } else {
              new BlockLocation(loc.getNames, loc.getHosts, loc.getOffset, loc.getLength)
            }
          }
          val lfs = new LocatedFileStatus(f.getLen, f.isDirectory, f.getReplication, f.getBlockSize,
            f.getModificationTime, 0, null, null, null, null, f.getPath, locations)
          if (f.isSymlink) {
            lfs.setSymlink(f.getSymlink)
          }
          Some(lfs)
        } catch {
          case _: FileNotFoundException if ignoreMissingFiles =>
            missingFiles += f.getPath.toString
            None
        }

      case f => Some(f)
    }

    if (missingFiles.nonEmpty) {
      logWarning(
        s"the following files were missing during file scan:\n  ${missingFiles.mkString("\n  ")}")
    }

    resolvedLeafStatuses
  }
  // scalastyle:on argcount

  /** A serializable variant of HDFS's BlockLocation. This is required by Hadoop 2.7. */
  private case class SerializableBlockLocation(
    names: Array[String],
    hosts: Array[String],
    offset: Long,
    length: Long)

  /** A serializable variant of HDFS's FileStatus. This is required by Hadoop 2.7. */
  private case class SerializableFileStatus(
    path: String,
    length: Long,
    isDir: Boolean,
    blockReplication: Short,
    blockSize: Long,
    modificationTime: Long,
    accessTime: Long,
    blockLocations: Array[SerializableBlockLocation])

  /** Checks if we should filter out this path name. */
  def shouldFilterOutPathName(pathName: String): Boolean = {
    // We filter follow paths:
    // 1. everything that starts with _ and ., except _common_metadata and _metadata
    // because Parquet needs to find those metadata files from leaf files returned by this method.
    // We should refactor this logic to not mix metadata files with data files.
    // 2. everything that ends with `._COPYING_`, because this is a intermediate state of file. we
    // should skip this file in case of double reading.
    val exclude = (pathName.startsWith("_") && !pathName.contains("=")) ||
      pathName.startsWith(".") || pathName.endsWith("._COPYING_")
    val include = pathName.startsWith("_common_metadata") || pathName.startsWith("_metadata")
    exclude && !include
  }
}

相关信息

spark 源码目录

相关文章

spark AccumulatorV2 源码

spark ByteBufferInputStream 源码

spark ByteBufferOutputStream 源码

spark CausedBy 源码

spark Clock 源码

spark ClosureCleaner 源码

spark CollectionsUtils 源码

spark CommandLineUtils 源码

spark CompletionIterator 源码

spark DependencyUtils 源码

0  赞