spark ShuffleMapTask 源码
spark ShuffleMapTask 代码
文件路径:/core/src/main/scala/org/apache/spark/scheduler/ShuffleMapTask.scala
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.spark.scheduler
import java.lang.management.ManagementFactory
import java.nio.ByteBuffer
import java.util.Properties
import org.apache.spark._
import org.apache.spark.broadcast.Broadcast
import org.apache.spark.internal.{config, Logging}
import org.apache.spark.rdd.RDD
/**
* A ShuffleMapTask divides the elements of an RDD into multiple buckets (based on a partitioner
* specified in the ShuffleDependency).
*
* See [[org.apache.spark.scheduler.Task]] for more information.
*
* @param stageId id of the stage this task belongs to
* @param stageAttemptId attempt id of the stage this task belongs to
* @param taskBinary broadcast version of the RDD and the ShuffleDependency. Once deserialized,
* the type should be (RDD[_], ShuffleDependency[_, _, _]).
* @param partition partition of the RDD this task is associated with
* @param numPartitions Total number of partitions in the stage that this task belongs to.
* @param locs preferred task execution locations for locality scheduling
* @param localProperties copy of thread-local properties set by the user on the driver side.
* @param serializedTaskMetrics a `TaskMetrics` that is created and serialized on the driver side
* and sent to executor side.
*
* The parameters below are optional:
* @param jobId id of the job this task belongs to
* @param appId id of the app this task belongs to
* @param appAttemptId attempt id of the app this task belongs to
* @param isBarrier whether this task belongs to a barrier stage. Spark must launch all the tasks
* at the same time for a barrier stage.
*/
private[spark] class ShuffleMapTask(
stageId: Int,
stageAttemptId: Int,
taskBinary: Broadcast[Array[Byte]],
partition: Partition,
numPartitions: Int,
@transient private var locs: Seq[TaskLocation],
localProperties: Properties,
serializedTaskMetrics: Array[Byte],
jobId: Option[Int] = None,
appId: Option[String] = None,
appAttemptId: Option[String] = None,
isBarrier: Boolean = false)
extends Task[MapStatus](stageId, stageAttemptId, partition.index, numPartitions, localProperties,
serializedTaskMetrics, jobId, appId, appAttemptId, isBarrier)
with Logging {
/** A constructor used only in test suites. This does not require passing in an RDD. */
def this(partitionId: Int) = {
this(0, 0, null, new Partition { override def index: Int = 0 }, 1, null, new Properties, null)
}
@transient private val preferredLocs: Seq[TaskLocation] = {
if (locs == null) Nil else locs.distinct
}
override def runTask(context: TaskContext): MapStatus = {
// Deserialize the RDD using the broadcast variable.
val threadMXBean = ManagementFactory.getThreadMXBean
val deserializeStartTimeNs = System.nanoTime()
val deserializeStartCpuTime = if (threadMXBean.isCurrentThreadCpuTimeSupported) {
threadMXBean.getCurrentThreadCpuTime
} else 0L
val ser = SparkEnv.get.closureSerializer.newInstance()
val rddAndDep = ser.deserialize[(RDD[_], ShuffleDependency[_, _, _])](
ByteBuffer.wrap(taskBinary.value), Thread.currentThread.getContextClassLoader)
_executorDeserializeTimeNs = System.nanoTime() - deserializeStartTimeNs
_executorDeserializeCpuTime = if (threadMXBean.isCurrentThreadCpuTimeSupported) {
threadMXBean.getCurrentThreadCpuTime - deserializeStartCpuTime
} else 0L
val rdd = rddAndDep._1
val dep = rddAndDep._2
// While we use the old shuffle fetch protocol, we use partitionId as mapId in the
// ShuffleBlockId construction.
val mapId = if (SparkEnv.get.conf.get(config.SHUFFLE_USE_OLD_FETCH_PROTOCOL)) {
partitionId
} else context.taskAttemptId()
dep.shuffleWriterProcessor.write(rdd, dep, mapId, context, partition)
}
override def preferredLocations: Seq[TaskLocation] = preferredLocs
override def toString: String = "ShuffleMapTask(%d, %d)".format(stageId, partitionId)
}
相关信息
相关文章
spark BarrierJobAllocationFailed 源码
0
赞
- 所属分类: 前端技术
- 本文标签:
热门推荐
-
2、 - 优质文章
-
3、 gate.io
-
8、 golang
-
9、 openharmony
-
10、 Vue中input框自动聚焦