tidb backfilling 源码
tidb backfilling 代码
文件路径:/ddl/backfilling.go
// Copyright 2020 PingCAP, Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package ddl
import (
"bytes"
"context"
"encoding/hex"
"fmt"
"strconv"
"sync"
"sync/atomic"
"time"
"github.com/pingcap/errors"
"github.com/pingcap/failpoint"
"github.com/pingcap/tidb/ddl/ingest"
ddlutil "github.com/pingcap/tidb/ddl/util"
"github.com/pingcap/tidb/expression"
"github.com/pingcap/tidb/kv"
"github.com/pingcap/tidb/metrics"
"github.com/pingcap/tidb/parser/model"
"github.com/pingcap/tidb/parser/terror"
"github.com/pingcap/tidb/sessionctx"
"github.com/pingcap/tidb/sessionctx/variable"
"github.com/pingcap/tidb/store/copr"
"github.com/pingcap/tidb/store/driver/backoff"
"github.com/pingcap/tidb/table"
"github.com/pingcap/tidb/tablecodec"
"github.com/pingcap/tidb/util"
"github.com/pingcap/tidb/util/dbterror"
"github.com/pingcap/tidb/util/logutil"
decoder "github.com/pingcap/tidb/util/rowDecoder"
"github.com/pingcap/tidb/util/timeutil"
"github.com/pingcap/tidb/util/topsql"
"github.com/tikv/client-go/v2/tikv"
"go.uber.org/zap"
)
type backfillWorkerType byte
const (
typeAddIndexWorker backfillWorkerType = 0
typeUpdateColumnWorker backfillWorkerType = 1
typeCleanUpIndexWorker backfillWorkerType = 2
typeAddIndexMergeTmpWorker backfillWorkerType = 3
)
// By now the DDL jobs that need backfilling include:
// 1: add-index
// 2: modify-column-type
// 3: clean-up global index
//
// They all have a write reorganization state to back fill data into the rows existed.
// Backfilling is time consuming, to accelerate this process, TiDB has built some sub
// workers to do this in the DDL owner node.
//
// DDL owner thread
// ^
// | (reorgCtx.doneCh)
// |
// worker master
// ^ (waitTaskResults)
// |
// |
// v (sendRangeTask)
// +--------------------+---------+---------+------------------+--------------+
// | | | | |
// backfillworker1 backfillworker2 backfillworker3 backfillworker4 ...
//
// The worker master is responsible for scaling the backfilling workers according to the
// system variable "tidb_ddl_reorg_worker_cnt". Essentially, reorg job is mainly based
// on the [start, end] range of the table to backfill data. We did not do it all at once,
// there were several ddl rounds.
//
// [start1---end1 start2---end2 start3---end3 start4---end4 ... ... ]
// | | | | | | | |
// +-------+ +-------+ +-------+ +-------+ ... ...
// | | | |
// bfworker1 bfworker2 bfworker3 bfworker4 ... ...
// | | | | | |
// +---------------- (round1)----------------+ +--(round2)--+
//
// The main range [start, end] will be split into small ranges.
// Each small range corresponds to a region and it will be delivered to a backfillworker.
// Each worker can only be assigned with one range at one round, those remaining ranges
// will be cached until all the backfill workers have had their previous range jobs done.
//
// [ region start --------------------- region end ]
// |
// v
// [ batch ] [ batch ] [ batch ] [ batch ] ...
// | | | |
// v v v v
// (a kv txn) -> -> ->
//
// For a single range, backfill worker doesn't backfill all the data in one kv transaction.
// Instead, it is divided into batches, each time a kv transaction completes the backfilling
// of a partial batch.
func (bWT backfillWorkerType) String() string {
switch bWT {
case typeAddIndexWorker:
return "add index"
case typeUpdateColumnWorker:
return "update column"
case typeCleanUpIndexWorker:
return "clean up index"
case typeAddIndexMergeTmpWorker:
return "merge temporary index"
default:
return "unknown"
}
}
type backfiller interface {
BackfillDataInTxn(handleRange reorgBackfillTask) (taskCtx backfillTaskContext, errInTxn error)
AddMetricInfo(float64)
}
type backfillResult struct {
addedCount int
scanCount int
nextKey kv.Key
err error
}
// backfillTaskContext is the context of the batch adding indices or updating column values.
// After finishing the batch adding indices or updating column values, result in backfillTaskContext will be merged into backfillResult.
type backfillTaskContext struct {
nextKey kv.Key
done bool
addedCount int
scanCount int
warnings map[errors.ErrorID]*terror.Error
warningsCount map[errors.ErrorID]int64
}
type reorgBackfillTask struct {
physicalTableID int64
startKey kv.Key
endKey kv.Key
endInclude bool
}
func (r *reorgBackfillTask) String() string {
physicalID := strconv.FormatInt(r.physicalTableID, 10)
startKey := tryDecodeToHandleString(r.startKey)
endKey := tryDecodeToHandleString(r.endKey)
rangeStr := "physicalTableID_" + physicalID + "_" + "[" + startKey + "," + endKey
if r.endInclude {
return rangeStr + "]"
}
return rangeStr + ")"
}
// mergeBackfillCtxToResult merge partial result in taskCtx into result.
func mergeBackfillCtxToResult(taskCtx *backfillTaskContext, result *backfillResult) {
result.nextKey = taskCtx.nextKey
result.addedCount += taskCtx.addedCount
result.scanCount += taskCtx.scanCount
}
type backfillWorker struct {
id int
reorgInfo *reorgInfo
batchCnt int
sessCtx sessionctx.Context
taskCh chan *reorgBackfillTask
resultCh chan *backfillResult
table table.Table
closed bool
priority int
tp backfillWorkerType
}
func newBackfillWorker(sessCtx sessionctx.Context, id int, t table.PhysicalTable,
reorgInfo *reorgInfo, tp backfillWorkerType) *backfillWorker {
return &backfillWorker{
id: id,
table: t,
reorgInfo: reorgInfo,
batchCnt: int(variable.GetDDLReorgBatchSize()),
sessCtx: sessCtx,
taskCh: make(chan *reorgBackfillTask, 1),
resultCh: make(chan *backfillResult, 1),
priority: reorgInfo.Job.Priority,
tp: tp,
}
}
func (w *backfillWorker) Close() {
if !w.closed {
w.closed = true
close(w.taskCh)
}
}
func closeBackfillWorkers(workers []*backfillWorker) {
for _, worker := range workers {
worker.Close()
}
}
// handleBackfillTask backfills range [task.startHandle, task.endHandle) handle's index to table.
func (w *backfillWorker) handleBackfillTask(d *ddlCtx, task *reorgBackfillTask, bf backfiller) *backfillResult {
handleRange := *task
result := &backfillResult{
err: nil,
addedCount: 0,
nextKey: handleRange.startKey,
}
lastLogCount := 0
lastLogTime := time.Now()
startTime := lastLogTime
rc := d.getReorgCtx(w.reorgInfo.Job)
for {
// Give job chance to be canceled, if we not check it here,
// if there is panic in bf.BackfillDataInTxn we will never cancel the job.
// Because reorgRecordTask may run a long time,
// we should check whether this ddl job is still runnable.
err := d.isReorgRunnable(w.reorgInfo.Job)
if err != nil {
result.err = err
return result
}
taskCtx, err := bf.BackfillDataInTxn(handleRange)
if err != nil {
result.err = err
return result
}
bf.AddMetricInfo(float64(taskCtx.addedCount))
mergeBackfillCtxToResult(&taskCtx, result)
// Although `handleRange` is for data in one region, but back fill worker still split it into many
// small reorg batch size slices and reorg them in many different kv txn.
// If a task failed, it may contained some committed small kv txn which has already finished the
// small range reorganization.
// In the next round of reorganization, the target handle range may overlap with last committed
// small ranges. This will cause the `redo` action in reorganization.
// So for added count and warnings collection, it is recommended to collect the statistics in every
// successfully committed small ranges rather than fetching it in the total result.
rc.increaseRowCount(int64(taskCtx.addedCount))
rc.mergeWarnings(taskCtx.warnings, taskCtx.warningsCount)
if num := result.scanCount - lastLogCount; num >= 30000 {
lastLogCount = result.scanCount
logutil.BgLogger().Info("[ddl] backfill worker back fill index",
zap.Int("workerID", w.id),
zap.Int("addedCount", result.addedCount),
zap.Int("scanCount", result.scanCount),
zap.String("nextHandle", tryDecodeToHandleString(taskCtx.nextKey)),
zap.Float64("speed(rows/s)", float64(num)/time.Since(lastLogTime).Seconds()))
lastLogTime = time.Now()
}
handleRange.startKey = taskCtx.nextKey
if taskCtx.done {
break
}
}
logutil.BgLogger().Info("[ddl] backfill worker finish task",
zap.Stringer("type", w.tp),
zap.Int("workerID", w.id),
zap.String("task", task.String()),
zap.Int("addedCount", result.addedCount),
zap.Int("scanCount", result.scanCount),
zap.String("nextHandle", tryDecodeToHandleString(result.nextKey)),
zap.String("takeTime", time.Since(startTime).String()))
return result
}
func (w *backfillWorker) run(d *ddlCtx, bf backfiller, job *model.Job) {
logutil.BgLogger().Info("[ddl] backfill worker start",
zap.Stringer("type", w.tp),
zap.Int("workerID", w.id))
defer func() {
w.resultCh <- &backfillResult{err: dbterror.ErrReorgPanic}
}()
defer util.Recover(metrics.LabelDDL, "backfillWorker.run", nil, false)
for {
task, more := <-w.taskCh
if !more {
break
}
d.setDDLLabelForTopSQL(job)
logutil.BgLogger().Debug("[ddl] backfill worker got task", zap.Int("workerID", w.id), zap.String("task", task.String()))
failpoint.Inject("mockBackfillRunErr", func() {
if w.id == 0 {
result := &backfillResult{addedCount: 0, nextKey: nil, err: errors.Errorf("mock backfill error")}
w.resultCh <- result
failpoint.Continue()
}
})
failpoint.Inject("mockHighLoadForAddIndex", func() {
sqlPrefixes := []string{"alter"}
topsql.MockHighCPULoad(job.Query, sqlPrefixes, 5)
})
failpoint.Inject("mockBackfillSlow", func() {
time.Sleep(100 * time.Millisecond)
})
// Dynamic change batch size.
w.batchCnt = int(variable.GetDDLReorgBatchSize())
result := w.handleBackfillTask(d, task, bf)
w.resultCh <- result
}
logutil.BgLogger().Info("[ddl] backfill worker exit",
zap.Stringer("type", w.tp),
zap.Int("workerID", w.id))
}
// splitTableRanges uses PD region's key ranges to split the backfilling table key range space,
// to speed up backfilling data in table with disperse handle.
// The `t` should be a non-partitioned table or a partition.
func splitTableRanges(t table.PhysicalTable, store kv.Storage, startKey, endKey kv.Key) ([]kv.KeyRange, error) {
logutil.BgLogger().Info("[ddl] split table range from PD",
zap.Int64("physicalTableID", t.GetPhysicalID()),
zap.String("startHandle", tryDecodeToHandleString(startKey)),
zap.String("endHandle", tryDecodeToHandleString(endKey)))
kvRange := kv.KeyRange{StartKey: startKey, EndKey: endKey}
s, ok := store.(tikv.Storage)
if !ok {
// Only support split ranges in tikv.Storage now.
return []kv.KeyRange{kvRange}, nil
}
maxSleep := 10000 // ms
bo := backoff.NewBackofferWithVars(context.Background(), maxSleep, nil)
rc := copr.NewRegionCache(s.GetRegionCache())
ranges, err := rc.SplitRegionRanges(bo, []kv.KeyRange{kvRange})
if err != nil {
return nil, errors.Trace(err)
}
if len(ranges) == 0 {
errMsg := fmt.Sprintf("cannot find region in range [%s, %s]", startKey.String(), endKey.String())
return nil, errors.Trace(dbterror.ErrInvalidSplitRegionRanges.GenWithStackByArgs(errMsg))
}
return ranges, nil
}
func waitTaskResults(workers []*backfillWorker, taskCnt int,
totalAddedCount *int64, startKey kv.Key) (kv.Key, int64, error) {
var (
addedCount int64
nextKey = startKey
firstErr error
)
for i := 0; i < taskCnt; i++ {
worker := workers[i]
result := <-worker.resultCh
if firstErr == nil && result.err != nil {
firstErr = result.err
// We should wait all working workers exits, any way.
continue
}
if result.err != nil {
logutil.BgLogger().Warn("[ddl] backfill worker failed", zap.Int("workerID", worker.id),
zap.Error(result.err))
}
if firstErr == nil {
*totalAddedCount += int64(result.addedCount)
addedCount += int64(result.addedCount)
nextKey = result.nextKey
}
}
return nextKey, addedCount, errors.Trace(firstErr)
}
// sendTasksAndWait sends tasks to workers, and waits for all the running workers to return results,
// there are taskCnt running workers.
func (dc *ddlCtx) sendTasksAndWait(sessPool *sessionPool, reorgInfo *reorgInfo, totalAddedCount *int64, workers []*backfillWorker, batchTasks []*reorgBackfillTask) error {
for i, task := range batchTasks {
workers[i].taskCh <- task
}
startKey := batchTasks[0].startKey
taskCnt := len(batchTasks)
startTime := time.Now()
nextKey, taskAddedCount, err := waitTaskResults(workers, taskCnt, totalAddedCount, startKey)
elapsedTime := time.Since(startTime)
if err == nil {
err = dc.isReorgRunnable(reorgInfo.Job)
}
if err != nil {
// Update the reorg handle that has been processed.
err1 := reorgInfo.UpdateReorgMeta(nextKey, sessPool)
metrics.BatchAddIdxHistogram.WithLabelValues(metrics.LblError).Observe(elapsedTime.Seconds())
logutil.BgLogger().Warn("[ddl] backfill worker handle batch tasks failed",
zap.Stringer("type", workers[0].tp),
zap.ByteString("elementType", reorgInfo.currElement.TypeKey),
zap.Int64("elementID", reorgInfo.currElement.ID),
zap.Int64("totalAddedCount", *totalAddedCount),
zap.String("startHandle", tryDecodeToHandleString(startKey)),
zap.String("nextHandle", tryDecodeToHandleString(nextKey)),
zap.Int64("batchAddedCount", taskAddedCount),
zap.String("taskFailedError", err.Error()),
zap.String("takeTime", elapsedTime.String()),
zap.NamedError("updateHandleError", err1))
return errors.Trace(err)
}
// nextHandle will be updated periodically in runReorgJob, so no need to update it here.
dc.getReorgCtx(reorgInfo.Job).setNextKey(nextKey)
metrics.BatchAddIdxHistogram.WithLabelValues(metrics.LblOK).Observe(elapsedTime.Seconds())
logutil.BgLogger().Info("[ddl] backfill workers successfully processed batch",
zap.Stringer("type", workers[0].tp),
zap.ByteString("elementType", reorgInfo.currElement.TypeKey),
zap.Int64("elementID", reorgInfo.currElement.ID),
zap.Int64("totalAddedCount", *totalAddedCount),
zap.String("startHandle", tryDecodeToHandleString(startKey)),
zap.String("nextHandle", tryDecodeToHandleString(nextKey)),
zap.Int64("batchAddedCount", taskAddedCount),
zap.String("takeTime", elapsedTime.String()))
return nil
}
func tryDecodeToHandleString(key kv.Key) string {
defer func() {
if r := recover(); r != nil {
logutil.BgLogger().Warn("tryDecodeToHandleString panic",
zap.Any("recover()", r),
zap.Binary("key", key))
}
}()
handle, err := tablecodec.DecodeRowKey(key)
if err != nil {
recordPrefixIdx := bytes.Index(key, []byte("_r"))
if recordPrefixIdx == -1 {
return fmt.Sprintf("key: %x", key)
}
handleBytes := key[recordPrefixIdx+2:]
terminatedWithZero := len(handleBytes) > 0 && handleBytes[len(handleBytes)-1] == 0
if terminatedWithZero {
handle, err := tablecodec.DecodeRowKey(key[:len(key)-1])
if err == nil {
return handle.String() + ".next"
}
}
return fmt.Sprintf("%x", handleBytes)
}
return handle.String()
}
// handleRangeTasks sends tasks to workers, and returns remaining kvRanges that is not handled.
func (dc *ddlCtx) handleRangeTasks(sessPool *sessionPool, t table.Table, workers []*backfillWorker, reorgInfo *reorgInfo,
totalAddedCount *int64, kvRanges []kv.KeyRange) ([]kv.KeyRange, error) {
batchTasks := make([]*reorgBackfillTask, 0, len(workers))
physicalTableID := reorgInfo.PhysicalTableID
var prefix kv.Key
if reorgInfo.mergingTmpIdx {
prefix = t.IndexPrefix()
} else {
prefix = t.RecordPrefix()
}
// Build reorg tasks.
for i, keyRange := range kvRanges {
endKey := keyRange.EndKey
endK, err := getRangeEndKey(reorgInfo.d.jobContext(reorgInfo.Job), workers[0].sessCtx.GetStore(), workers[0].priority, prefix, keyRange.StartKey, endKey)
if err != nil {
logutil.BgLogger().Info("[ddl] send range task to workers, get reverse key failed", zap.Error(err))
} else {
logutil.BgLogger().Info("[ddl] send range task to workers, change end key",
zap.String("end key", hex.EncodeToString(endKey)), zap.String("current end key", hex.EncodeToString(endK)))
endKey = endK
}
task := &reorgBackfillTask{
physicalTableID: physicalTableID,
startKey: keyRange.StartKey,
endKey: endKey,
// If the boundaries overlap, we should ignore the preceding endKey.
endInclude: endK.Cmp(keyRange.EndKey) != 0 || i == len(kvRanges)-1}
batchTasks = append(batchTasks, task)
if len(batchTasks) >= len(workers) {
break
}
}
if len(batchTasks) == 0 {
return nil, nil
}
// Wait tasks finish.
err := dc.sendTasksAndWait(sessPool, reorgInfo, totalAddedCount, workers, batchTasks)
if err != nil {
return nil, errors.Trace(err)
}
if len(batchTasks) < len(kvRanges) {
// There are kvRanges not handled.
remains := kvRanges[len(batchTasks):]
return remains, nil
}
return nil, nil
}
var (
// TestCheckWorkerNumCh use for test adjust backfill worker.
TestCheckWorkerNumCh = make(chan *sync.WaitGroup)
// TestCheckWorkerNumber use for test adjust backfill worker.
TestCheckWorkerNumber = int32(16)
// TestCheckReorgTimeout is used to mock timeout when reorg data.
TestCheckReorgTimeout = int32(0)
)
func loadDDLReorgVars(ctx context.Context, sessPool *sessionPool) error {
// Get sessionctx from context resource pool.
sCtx, err := sessPool.get()
if err != nil {
return errors.Trace(err)
}
defer sessPool.put(sCtx)
return ddlutil.LoadDDLReorgVars(ctx, sCtx)
}
func makeupDecodeColMap(sessCtx sessionctx.Context, t table.Table) (map[int64]decoder.Column, error) {
dbName := model.NewCIStr(sessCtx.GetSessionVars().CurrentDB)
writableColInfos := make([]*model.ColumnInfo, 0, len(t.WritableCols()))
for _, col := range t.WritableCols() {
writableColInfos = append(writableColInfos, col.ColumnInfo)
}
exprCols, _, err := expression.ColumnInfos2ColumnsAndNames(sessCtx, dbName, t.Meta().Name, writableColInfos, t.Meta())
if err != nil {
return nil, err
}
mockSchema := expression.NewSchema(exprCols...)
decodeColMap := decoder.BuildFullDecodeColMap(t.WritableCols(), mockSchema)
return decodeColMap, nil
}
func setSessCtxLocation(sctx sessionctx.Context, info *reorgInfo) error {
// It is set to SystemLocation to be compatible with nil LocationInfo.
*sctx.GetSessionVars().TimeZone = *timeutil.SystemLocation()
if info.ReorgMeta.Location != nil {
loc, err := info.ReorgMeta.Location.GetLocation()
if err != nil {
return errors.Trace(err)
}
*sctx.GetSessionVars().TimeZone = *loc
}
return nil
}
// writePhysicalTableRecord handles the "add index" or "modify/change column" reorganization state for a non-partitioned table or a partition.
// For a partitioned table, it should be handled partition by partition.
//
// How to "add index" or "update column value" in reorganization state?
// Concurrently process the @@tidb_ddl_reorg_worker_cnt tasks. Each task deals with a handle range of the index/row record.
// The handle range is split from PD regions now. Each worker deal with a region table key range one time.
// Each handle range by estimation, concurrent processing needs to perform after the handle range has been acquired.
// The operation flow is as follows:
// 1. Open numbers of defaultWorkers goroutines.
// 2. Split table key range from PD regions.
// 3. Send tasks to running workers by workers's task channel. Each task deals with a region key ranges.
// 4. Wait all these running tasks finished, then continue to step 3, until all tasks is done.
//
// The above operations are completed in a transaction.
// Finally, update the concurrent processing of the total number of rows, and store the completed handle value.
func (dc *ddlCtx) writePhysicalTableRecord(sessPool *sessionPool, t table.PhysicalTable, bfWorkerType backfillWorkerType, reorgInfo *reorgInfo) error {
job := reorgInfo.Job
totalAddedCount := job.GetRowCount()
startKey, endKey := reorgInfo.StartKey, reorgInfo.EndKey
sessCtx := newContext(reorgInfo.d.store)
decodeColMap, err := makeupDecodeColMap(sessCtx, t)
if err != nil {
return errors.Trace(err)
}
if err := dc.isReorgRunnable(reorgInfo.Job); err != nil {
return errors.Trace(err)
}
if startKey == nil && endKey == nil {
return nil
}
failpoint.Inject("MockCaseWhenParseFailure", func(val failpoint.Value) {
//nolint:forcetypeassert
if val.(bool) {
failpoint.Return(errors.New("job.ErrCount:" + strconv.Itoa(int(job.ErrorCount)) + ", mock unknown type: ast.whenClause."))
}
})
// variable.ddlReorgWorkerCounter can be modified by system variable "tidb_ddl_reorg_worker_cnt".
workerCnt := variable.GetDDLReorgWorkerCounter()
backfillWorkers := make([]*backfillWorker, 0, workerCnt)
defer func() {
closeBackfillWorkers(backfillWorkers)
}()
jc := dc.jobContext(job)
for {
kvRanges, err := splitTableRanges(t, reorgInfo.d.store, startKey, endKey)
if err != nil {
return errors.Trace(err)
}
// For dynamic adjust backfill worker number.
if err := loadDDLReorgVars(dc.ctx, sessPool); err != nil {
logutil.BgLogger().Error("[ddl] load DDL reorganization variable failed", zap.Error(err))
}
workerCnt = variable.GetDDLReorgWorkerCounter()
rowFormat := variable.GetDDLReorgRowFormat()
// If only have 1 range, we can only start 1 worker.
if len(kvRanges) < int(workerCnt) {
workerCnt = int32(len(kvRanges))
}
// Enlarge the worker size.
for i := len(backfillWorkers); i < int(workerCnt); i++ {
sessCtx := newContext(reorgInfo.d.store)
sessCtx.GetSessionVars().StmtCtx.IsDDLJobInQueue = true
// Set the row encode format version.
sessCtx.GetSessionVars().RowEncoder.Enable = rowFormat != variable.DefTiDBRowFormatV1
// Simulate the sql mode environment in the worker sessionCtx.
sqlMode := reorgInfo.ReorgMeta.SQLMode
sessCtx.GetSessionVars().SQLMode = sqlMode
if err := setSessCtxLocation(sessCtx, reorgInfo); err != nil {
return errors.Trace(err)
}
sessCtx.GetSessionVars().StmtCtx.BadNullAsWarning = !sqlMode.HasStrictMode()
sessCtx.GetSessionVars().StmtCtx.TruncateAsWarning = !sqlMode.HasStrictMode()
sessCtx.GetSessionVars().StmtCtx.OverflowAsWarning = !sqlMode.HasStrictMode()
sessCtx.GetSessionVars().StmtCtx.AllowInvalidDate = sqlMode.HasAllowInvalidDatesMode()
sessCtx.GetSessionVars().StmtCtx.DividedByZeroAsWarning = !sqlMode.HasStrictMode()
sessCtx.GetSessionVars().StmtCtx.IgnoreZeroInDate = !sqlMode.HasStrictMode() || sqlMode.HasAllowInvalidDatesMode()
sessCtx.GetSessionVars().StmtCtx.NoZeroDate = sqlMode.HasStrictMode()
switch bfWorkerType {
case typeAddIndexWorker:
idxWorker, err := newAddIndexWorker(sessCtx, i, t, decodeColMap, reorgInfo, jc, job)
if err != nil {
return errors.Trace(err)
}
backfillWorkers = append(backfillWorkers, idxWorker.backfillWorker)
go idxWorker.backfillWorker.run(reorgInfo.d, idxWorker, job)
case typeAddIndexMergeTmpWorker:
tmpIdxWorker := newMergeTempIndexWorker(sessCtx, i, t, reorgInfo, jc)
backfillWorkers = append(backfillWorkers, tmpIdxWorker.backfillWorker)
go tmpIdxWorker.backfillWorker.run(reorgInfo.d, tmpIdxWorker, job)
case typeUpdateColumnWorker:
// Setting InCreateOrAlterStmt tells the difference between SELECT casting and ALTER COLUMN casting.
sessCtx.GetSessionVars().StmtCtx.InCreateOrAlterStmt = true
updateWorker := newUpdateColumnWorker(sessCtx, i, t, decodeColMap, reorgInfo, jc)
backfillWorkers = append(backfillWorkers, updateWorker.backfillWorker)
go updateWorker.backfillWorker.run(reorgInfo.d, updateWorker, job)
case typeCleanUpIndexWorker:
idxWorker := newCleanUpIndexWorker(sessCtx, i, t, decodeColMap, reorgInfo, jc)
backfillWorkers = append(backfillWorkers, idxWorker.backfillWorker)
go idxWorker.backfillWorker.run(reorgInfo.d, idxWorker, job)
default:
return errors.New("unknow backfill type")
}
}
// Shrink the worker size.
if len(backfillWorkers) > int(workerCnt) {
workers := backfillWorkers[workerCnt:]
backfillWorkers = backfillWorkers[:workerCnt]
closeBackfillWorkers(workers)
}
failpoint.Inject("checkBackfillWorkerNum", func(val failpoint.Value) {
//nolint:forcetypeassert
if val.(bool) {
num := int(atomic.LoadInt32(&TestCheckWorkerNumber))
if num != 0 {
if num > len(kvRanges) {
if len(backfillWorkers) != len(kvRanges) {
failpoint.Return(errors.Errorf("check backfill worker num error, len kv ranges is: %v, check backfill worker num is: %v, actual record num is: %v", len(kvRanges), num, len(backfillWorkers)))
}
} else if num != len(backfillWorkers) {
failpoint.Return(errors.Errorf("check backfill worker num error, len kv ranges is: %v, check backfill worker num is: %v, actual record num is: %v", len(kvRanges), num, len(backfillWorkers)))
}
var wg sync.WaitGroup
wg.Add(1)
TestCheckWorkerNumCh <- &wg
wg.Wait()
}
}
})
logutil.BgLogger().Info("[ddl] start backfill workers to reorg record",
zap.Stringer("type", bfWorkerType),
zap.Int("workerCnt", len(backfillWorkers)),
zap.Int("regionCnt", len(kvRanges)),
zap.String("startKey", hex.EncodeToString(startKey)),
zap.String("endKey", hex.EncodeToString(endKey)))
if bfWorkerType == typeAddIndexWorker && job.ReorgMeta.ReorgTp == model.ReorgTypeLitMerge {
if bc, ok := ingest.LitBackCtxMgr.Load(job.ID); ok {
err := bc.Flush(reorgInfo.currElement.ID)
if err != nil {
return errors.Trace(err)
}
} else {
return errors.New(ingest.LitErrGetBackendFail)
}
}
remains, err := dc.handleRangeTasks(sessPool, t, backfillWorkers, reorgInfo, &totalAddedCount, kvRanges)
if err != nil {
return errors.Trace(err)
}
if len(remains) == 0 {
break
}
startKey = remains[0].StartKey
}
return nil
}
// recordIterFunc is used for low-level record iteration.
type recordIterFunc func(h kv.Handle, rowKey kv.Key, rawRecord []byte) (more bool, err error)
func iterateSnapshotKeys(ctx *JobContext, store kv.Storage, priority int, keyPrefix kv.Key, version uint64,
startKey kv.Key, endKey kv.Key, fn recordIterFunc) error {
isRecord := tablecodec.IsRecordKey(keyPrefix.Next())
var firstKey kv.Key
if startKey == nil {
firstKey = keyPrefix
} else {
firstKey = startKey
}
var upperBound kv.Key
if endKey == nil {
upperBound = keyPrefix.PrefixNext()
} else {
upperBound = endKey.PrefixNext()
}
ver := kv.Version{Ver: version}
snap := store.GetSnapshot(ver)
snap.SetOption(kv.Priority, priority)
snap.SetOption(kv.RequestSourceInternal, true)
snap.SetOption(kv.RequestSourceType, ctx.ddlJobSourceType())
if tagger := ctx.getResourceGroupTaggerForTopSQL(); tagger != nil {
snap.SetOption(kv.ResourceGroupTagger, tagger)
}
it, err := snap.Iter(firstKey, upperBound)
if err != nil {
return errors.Trace(err)
}
defer it.Close()
for it.Valid() {
if !it.Key().HasPrefix(keyPrefix) {
break
}
var handle kv.Handle
if isRecord {
handle, err = tablecodec.DecodeRowKey(it.Key())
if err != nil {
return errors.Trace(err)
}
}
more, err := fn(handle, it.Key(), it.Value())
if !more || err != nil {
return errors.Trace(err)
}
err = kv.NextUntil(it, util.RowKeyPrefixFilter(it.Key()))
if err != nil {
if kv.ErrNotExist.Equal(err) {
break
}
return errors.Trace(err)
}
}
return nil
}
// getRegionEndKey gets the actual end key for the range of [startKey, endKey].
func getRangeEndKey(ctx *JobContext, store kv.Storage, priority int, keyPrefix kv.Key, startKey, endKey kv.Key) (kv.Key, error) {
snap := store.GetSnapshot(kv.MaxVersion)
snap.SetOption(kv.Priority, priority)
if tagger := ctx.getResourceGroupTaggerForTopSQL(); tagger != nil {
snap.SetOption(kv.ResourceGroupTagger, tagger)
}
snap.SetOption(kv.RequestSourceInternal, true)
snap.SetOption(kv.RequestSourceType, ctx.ddlJobSourceType())
it, err := snap.IterReverse(endKey.Next())
if err != nil {
return nil, errors.Trace(err)
}
defer it.Close()
if !it.Valid() || !it.Key().HasPrefix(keyPrefix) {
return startKey, nil
}
if it.Key().Cmp(startKey) < 0 {
return startKey, nil
}
return it.Key(), nil
}
func mergeWarningsAndWarningsCount(partWarnings, totalWarnings map[errors.ErrorID]*terror.Error, partWarningsCount, totalWarningsCount map[errors.ErrorID]int64) (map[errors.ErrorID]*terror.Error, map[errors.ErrorID]int64) {
for _, warn := range partWarnings {
if _, ok := totalWarningsCount[warn.ID()]; ok {
totalWarningsCount[warn.ID()] += partWarningsCount[warn.ID()]
} else {
totalWarningsCount[warn.ID()] = partWarningsCount[warn.ID()]
totalWarnings[warn.ID()] = warn
}
}
return totalWarnings, totalWarningsCount
}
func logSlowOperations(elapsed time.Duration, slowMsg string, threshold uint32) {
if threshold == 0 {
threshold = atomic.LoadUint32(&variable.DDLSlowOprThreshold)
}
if elapsed >= time.Duration(threshold)*time.Millisecond {
logutil.BgLogger().Info("[ddl] slow operations", zap.Duration("takeTimes", elapsed), zap.String("msg", slowMsg))
}
}
相关信息
相关文章
0
赞
热门推荐
-
2、 - 优质文章
-
3、 gate.io
-
8、 golang
-
9、 openharmony
-
10、 Vue中input框自动聚焦