superset boxplot 源码

  • 2022-10-20
  • 浏览 (424)

superset boxplot 代码

文件路径:/superset/utils/pandas_postprocessing/boxplot.py

# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.
from typing import Any, Callable, Dict, List, Optional, Set, Tuple, Union

import numpy as np
from flask_babel import gettext as _
from pandas import DataFrame, Series, to_numeric

from superset.exceptions import InvalidPostProcessingError
from superset.utils.core import PostProcessingBoxplotWhiskerType
from superset.utils.pandas_postprocessing.aggregate import aggregate


def boxplot(
    df: DataFrame,
    groupby: List[str],
    metrics: List[str],
    whisker_type: PostProcessingBoxplotWhiskerType,
    percentiles: Optional[
        Union[List[Union[int, float]], Tuple[Union[int, float], Union[int, float]]]
    ] = None,
) -> DataFrame:
    """
    Calculate boxplot statistics. For each metric, the operation creates eight
    new columns with the column name suffixed with the following values:

    - `__mean`: the mean
    - `__median`: the median
    - `__max`: the maximum value excluding outliers (see whisker type)
    - `__min`: the minimum value excluding outliers (see whisker type)
    - `__q1`: the median
    - `__q1`: the first quartile (25th percentile)
    - `__q3`: the third quartile (75th percentile)
    - `__count`: count of observations
    - `__outliers`: the values that fall outside the minimum/maximum value
                    (see whisker type)

    :param df: DataFrame containing all-numeric data (temporal column ignored)
    :param groupby: The categories to group by (x-axis)
    :param metrics: The metrics for which to calculate the distribution
    :param whisker_type: The confidence level type
    :return: DataFrame with boxplot statistics per groupby
    """

    def quartile1(series: Series) -> float:
        return np.nanpercentile(series, 25, interpolation="midpoint")

    def quartile3(series: Series) -> float:
        return np.nanpercentile(series, 75, interpolation="midpoint")

    if whisker_type == PostProcessingBoxplotWhiskerType.TUKEY:

        def whisker_high(series: Series) -> float:
            upper_outer_lim = quartile3(series) + 1.5 * (
                quartile3(series) - quartile1(series)
            )
            return series[series <= upper_outer_lim].max()

        def whisker_low(series: Series) -> float:
            lower_outer_lim = quartile1(series) - 1.5 * (
                quartile3(series) - quartile1(series)
            )
            return series[series >= lower_outer_lim].min()

    elif whisker_type == PostProcessingBoxplotWhiskerType.PERCENTILE:
        if (
            not isinstance(percentiles, (list, tuple))
            or len(percentiles) != 2
            or not isinstance(percentiles[0], (int, float))
            or not isinstance(percentiles[1], (int, float))
            or percentiles[0] >= percentiles[1]
        ):
            raise InvalidPostProcessingError(
                _(
                    "percentiles must be a list or tuple with two numeric values, "
                    "of which the first is lower than the second value"
                )
            )
        low, high = percentiles[0], percentiles[1]

        def whisker_high(series: Series) -> float:
            return np.nanpercentile(series, high)

        def whisker_low(series: Series) -> float:
            return np.nanpercentile(series, low)

    else:
        whisker_high = np.max
        whisker_low = np.min

    def outliers(series: Series) -> Set[float]:
        above = series[series > whisker_high(series)]
        below = series[series < whisker_low(series)]
        return above.tolist() + below.tolist()

    operators: Dict[str, Callable[[Any], Any]] = {
        "mean": np.mean,
        "median": np.median,
        "max": whisker_high,
        "min": whisker_low,
        "q1": quartile1,
        "q3": quartile3,
        "count": np.ma.count,
        "outliers": outliers,
    }
    aggregates: Dict[str, Dict[str, Union[str, Callable[..., Any]]]] = {
        f"{metric}__{operator_name}": {"column": metric, "operator": operator}
        for operator_name, operator in operators.items()
        for metric in metrics
    }

    # nanpercentile needs numeric values, otherwise the isnan function
    # that's used in the underlying function will fail
    for column in metrics:
        if df.dtypes[column] == np.object:
            df[column] = to_numeric(df[column], errors="coerce")

    return aggregate(df, groupby=groupby, aggregates=aggregates)

相关信息

superset 源码目录

相关文章

superset init 源码

superset aggregate 源码

superset compare 源码

superset contribution 源码

superset cum 源码

superset diff 源码

superset flatten 源码

superset geography 源码

superset pivot 源码

superset prophet 源码

0  赞