superset flatten 源码

  • 2022-10-20
  • 浏览 (406)

superset flatten 代码

文件路径:/superset/utils/pandas_postprocessing/flatten.py

# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.

from typing import Sequence, Union

import pandas as pd
from numpy.distutils.misc_util import is_sequence

from superset.utils.pandas_postprocessing.utils import (
    _is_multi_index_on_columns,
    escape_separator,
    FLAT_COLUMN_SEPARATOR,
)


def flatten(
    df: pd.DataFrame,
    reset_index: bool = True,
    drop_levels: Union[Sequence[int], Sequence[str]] = (),
) -> pd.DataFrame:
    """
    Convert N-dimensional DataFrame to a flat DataFrame

    :param df: N-dimensional DataFrame.
    :param reset_index: Convert index to column when df.index isn't RangeIndex
    :param drop_levels: index of level or names of level might be dropped
                        if df is N-dimensional
    :return: a flat DataFrame

    Examples
    -----------

    Convert DatetimeIndex into columns.

    >>> index = pd.to_datetime(["2021-01-01", "2021-01-02", "2021-01-03",])
    >>> index.name = "__timestamp"
    >>> df = pd.DataFrame(index=index, data={"metric": [1, 2, 3]})
    >>> df
                 metric
    __timestamp
    2021-01-01        1
    2021-01-02        2
    2021-01-03        3
    >>> df = flatten(df)
    >>> df
      __timestamp  metric
    0  2021-01-01       1
    1  2021-01-02       2
    2  2021-01-03       3

    Convert DatetimeIndex and MultipleIndex into columns

    >>> iterables = [["foo", "bar"], ["one", "two"]]
    >>> columns = pd.MultiIndex.from_product(iterables, names=["level1", "level2"])
    >>> df = pd.DataFrame(index=index, columns=columns, data=1)
    >>> df
    level1      foo     bar
    level2      one two one two
    __timestamp
    2021-01-01    1   1   1   1
    2021-01-02    1   1   1   1
    2021-01-03    1   1   1   1
    >>> flatten(df)
      __timestamp foo, one foo, two bar, one bar, two
    0  2021-01-01        1        1        1        1
    1  2021-01-02        1        1        1        1
    2  2021-01-03        1        1        1        1
    """
    if _is_multi_index_on_columns(df):
        df.columns = df.columns.droplevel(drop_levels)
        _columns = []
        for series in df.columns.to_flat_index():
            _cells = []
            for cell in series if is_sequence(series) else [series]:
                if pd.notnull(cell):
                    # every cell should be converted to string and escape comma
                    _cells.append(escape_separator(str(cell)))
            _columns.append(FLAT_COLUMN_SEPARATOR.join(_cells))

        df.columns = _columns

    if reset_index and not isinstance(df.index, pd.RangeIndex):
        df = df.reset_index(level=0)
    return df

相关信息

superset 源码目录

相关文章

superset init 源码

superset aggregate 源码

superset boxplot 源码

superset compare 源码

superset contribution 源码

superset cum 源码

superset diff 源码

superset geography 源码

superset pivot 源码

superset prophet 源码

0  赞