echarts KDTree 源码
echarts KDTree 代码
文件路径:/src/util/KDTree.ts
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
import quickSelect from './quickSelect';
import { VectorArray } from 'zrender/src/core/vector';
type KDTreePoint = {
array: VectorArray
};
class KDTreeNode<T> {
left: KDTreeNode<T>;
right: KDTreeNode<T>;
axis: number;
data: T;
constructor(axis: number, data: T) {
this.axis = axis;
this.data = data;
}
}
/**
* @constructor
* @alias module:echarts/data/KDTree
* @param {Array} points List of points.
* each point needs an array property to repesent the actual data
* @param {Number} [dimension]
* Point dimension.
* Default will use the first point's length as dimensiont
*/
class KDTree<T extends KDTreePoint> {
dimension: number;
root: KDTreeNode<T>;
// Use one stack to avoid allocation
// each time searching the nearest point
private _stack: KDTreeNode<T>[] = [];
// Again avoid allocating a new array
// each time searching nearest N points
private _nearstNList: {
dist: number,
node: KDTreeNode<T>
}[] = [];
constructor(points: T[], dimension?: number) {
if (!points.length) {
return;
}
if (!dimension) {
dimension = points[0].array.length;
}
this.dimension = dimension;
this.root = this._buildTree(points, 0, points.length - 1, 0);
}
/**
* Resursively build the tree
*/
private _buildTree(points: T[], left: number, right: number, axis: number): KDTreeNode<T> {
if (right < left) {
return null;
}
let medianIndex = Math.floor((left + right) / 2);
medianIndex = quickSelect(
points, left, right, medianIndex,
function (a: T, b: T) {
return a.array[axis] - b.array[axis];
}
);
const median = points[medianIndex];
const node = new KDTreeNode(axis, median);
axis = (axis + 1) % this.dimension;
if (right > left) {
node.left = this._buildTree(points, left, medianIndex - 1, axis);
node.right = this._buildTree(points, medianIndex + 1, right, axis);
}
return node;
};
/**
* Find nearest point
* @param target Target point
* @param squaredDistance Squared distance function
* @return Nearest point
*/
nearest(target: T, squaredDistance: (a: T, b: T) => number) {
let curr = this.root;
const stack = this._stack;
let idx = 0;
let minDist = Infinity;
let nearestNode = null;
if (curr.data !== target) {
minDist = squaredDistance(curr.data, target);
nearestNode = curr;
}
if (target.array[curr.axis] < curr.data.array[curr.axis]) {
// Left first
curr.right && (stack[idx++] = curr.right);
curr.left && (stack[idx++] = curr.left);
}
else {
// Right first
curr.left && (stack[idx++] = curr.left);
curr.right && (stack[idx++] = curr.right);
}
while (idx--) {
curr = stack[idx];
let currDist = target.array[curr.axis] - curr.data.array[curr.axis];
const isLeft = currDist < 0;
let needsCheckOtherSide = false;
currDist = currDist * currDist;
// Intersecting right hyperplane with minDist hypersphere
if (currDist < minDist) {
currDist = squaredDistance(curr.data, target);
if (currDist < minDist && curr.data !== target) {
minDist = currDist;
nearestNode = curr;
}
needsCheckOtherSide = true;
}
if (isLeft) {
if (needsCheckOtherSide) {
curr.right && (stack[idx++] = curr.right);
}
// Search in the left area
curr.left && (stack[idx++] = curr.left);
}
else {
if (needsCheckOtherSide) {
curr.left && (stack[idx++] = curr.left);
}
// Search the right area
curr.right && (stack[idx++] = curr.right);
}
}
return nearestNode.data;
};
_addNearest(found: number, dist: number, node: KDTreeNode<T>) {
const nearestNList = this._nearstNList;
let i = found - 1;
// Insert to the right position
// Sort from small to large
for (; i > 0; i--) {
if (dist >= nearestNList[i - 1].dist) {
break;
}
else {
nearestNList[i].dist = nearestNList[i - 1].dist;
nearestNList[i].node = nearestNList[i - 1].node;
}
}
nearestNList[i].dist = dist;
nearestNList[i].node = node;
};
/**
* Find nearest N points
* @param target Target point
* @param N
* @param squaredDistance Squared distance function
* @param output Output nearest N points
*/
nearestN(
target: T,
N: number,
squaredDistance: (a: T, b: T) => number,
output: T[]
) {
if (N <= 0) {
output.length = 0;
return output;
}
let curr = this.root;
const stack = this._stack;
let idx = 0;
const nearestNList = this._nearstNList;
for (let i = 0; i < N; i++) {
// Allocate
if (!nearestNList[i]) {
nearestNList[i] = {
dist: 0, node: null
};
}
nearestNList[i].dist = 0;
nearestNList[i].node = null;
}
const currDist = squaredDistance(curr.data, target);
let found = 0;
if (curr.data !== target) {
found++;
this._addNearest(found, currDist, curr);
}
if (target.array[curr.axis] < curr.data.array[curr.axis]) {
// Left first
curr.right && (stack[idx++] = curr.right);
curr.left && (stack[idx++] = curr.left);
}
else {
// Right first
curr.left && (stack[idx++] = curr.left);
curr.right && (stack[idx++] = curr.right);
}
while (idx--) {
curr = stack[idx];
let currDist = target.array[curr.axis] - curr.data.array[curr.axis];
const isLeft = currDist < 0;
let needsCheckOtherSide = false;
currDist = currDist * currDist;
// Intersecting right hyperplane with minDist hypersphere
if (found < N || currDist < nearestNList[found - 1].dist) {
currDist = squaredDistance(curr.data, target);
if (
(found < N || currDist < nearestNList[found - 1].dist)
&& curr.data !== target
) {
if (found < N) {
found++;
}
this._addNearest(found, currDist, curr);
}
needsCheckOtherSide = true;
}
if (isLeft) {
if (needsCheckOtherSide) {
curr.right && (stack[idx++] = curr.right);
}
// Search in the left area
curr.left && (stack[idx++] = curr.left);
}
else {
if (needsCheckOtherSide) {
curr.left && (stack[idx++] = curr.left);
}
// Search the right area
curr.right && (stack[idx++] = curr.right);
}
}
// Copy to output
for (let i = 0; i < found; i++) {
output[i] = nearestNList[i].node.data;
}
output.length = found;
return output;
}
}
export default KDTree;
相关信息
相关文章
0
赞
热门推荐
-
2、 - 优质文章
-
3、 gate.io
-
8、 golang
-
9、 openharmony
-
10、 Vue中input框自动聚焦