spark PairDStreamFunctions 源码

  • 2022-10-20
  • 浏览 (244)

spark PairDStreamFunctions 代码

文件路径:/streaming/src/main/scala/org/apache/spark/streaming/dstream/PairDStreamFunctions.scala

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.spark.streaming.dstream

import scala.collection.mutable.ArrayBuffer
import scala.reflect.ClassTag

import org.apache.hadoop.conf.Configuration
import org.apache.hadoop.mapred.{JobConf, OutputFormat}
import org.apache.hadoop.mapreduce.{OutputFormat => NewOutputFormat}

import org.apache.spark.{HashPartitioner, Partitioner}
import org.apache.spark.rdd.RDD
import org.apache.spark.streaming._
import org.apache.spark.streaming.StreamingContext.rddToFileName
import org.apache.spark.util.{SerializableConfiguration, SerializableJobConf}

/**
 * Extra functions available on DStream of (key, value) pairs through an implicit conversion.
 */
class PairDStreamFunctions[K, V](self: DStream[(K, V)])
    (implicit kt: ClassTag[K], vt: ClassTag[V], ord: Ordering[K])
  extends Serializable {
  private[streaming] def ssc = self.ssc

  private[streaming] def sparkContext = self.context.sparkContext

  private[streaming] def defaultPartitioner(numPartitions: Int = self.ssc.sc.defaultParallelism) = {
    new HashPartitioner(numPartitions)
  }

  /**
   * Return a new DStream by applying `groupByKey` to each RDD. Hash partitioning is used to
   * generate the RDDs with Spark's default number of partitions.
   */
  def groupByKey(): DStream[(K, Iterable[V])] = ssc.withScope {
    groupByKey(defaultPartitioner())
  }

  /**
   * Return a new DStream by applying `groupByKey` to each RDD. Hash partitioning is used to
   * generate the RDDs with `numPartitions` partitions.
   */
  def groupByKey(numPartitions: Int): DStream[(K, Iterable[V])] = ssc.withScope {
    groupByKey(defaultPartitioner(numPartitions))
  }

  /**
   * Return a new DStream by applying `groupByKey` on each RDD. The supplied
   * org.apache.spark.Partitioner is used to control the partitioning of each RDD.
   */
  def groupByKey(partitioner: Partitioner): DStream[(K, Iterable[V])] = ssc.withScope {
    val createCombiner = (v: V) => ArrayBuffer[V](v)
    val mergeValue = (c: ArrayBuffer[V], v: V) => (c += v)
    val mergeCombiner = (c1: ArrayBuffer[V], c2: ArrayBuffer[V]) => (c1 ++ c2)
    combineByKey(createCombiner, mergeValue, mergeCombiner, partitioner)
      .asInstanceOf[DStream[(K, Iterable[V])]]
  }

  /**
   * Return a new DStream by applying `reduceByKey` to each RDD. The values for each key are
   * merged using the associative and commutative reduce function. Hash partitioning is used to
   * generate the RDDs with Spark's default number of partitions.
   */
  def reduceByKey(reduceFunc: (V, V) => V): DStream[(K, V)] = ssc.withScope {
    reduceByKey(reduceFunc, defaultPartitioner())
  }

  /**
   * Return a new DStream by applying `reduceByKey` to each RDD. The values for each key are
   * merged using the supplied reduce function. Hash partitioning is used to generate the RDDs
   * with `numPartitions` partitions.
   */
  def reduceByKey(
      reduceFunc: (V, V) => V,
      numPartitions: Int): DStream[(K, V)] = ssc.withScope {
    reduceByKey(reduceFunc, defaultPartitioner(numPartitions))
  }

  /**
   * Return a new DStream by applying `reduceByKey` to each RDD. The values for each key are
   * merged using the supplied reduce function. org.apache.spark.Partitioner is used to control
   * the partitioning of each RDD.
   */
  def reduceByKey(
      reduceFunc: (V, V) => V,
      partitioner: Partitioner): DStream[(K, V)] = ssc.withScope {
    combineByKey((v: V) => v, reduceFunc, reduceFunc, partitioner)
  }

  /**
   * Combine elements of each key in DStream's RDDs using custom functions. This is similar to the
   * combineByKey for RDDs. Please refer to combineByKey in
   * org.apache.spark.rdd.PairRDDFunctions in the Spark core documentation for more information.
   */
  def combineByKey[C: ClassTag](
      createCombiner: V => C,
      mergeValue: (C, V) => C,
      mergeCombiner: (C, C) => C,
      partitioner: Partitioner,
      mapSideCombine: Boolean = true): DStream[(K, C)] = ssc.withScope {
    val cleanedCreateCombiner = sparkContext.clean(createCombiner)
    val cleanedMergeValue = sparkContext.clean(mergeValue)
    val cleanedMergeCombiner = sparkContext.clean(mergeCombiner)
    new ShuffledDStream[K, V, C](
      self,
      cleanedCreateCombiner,
      cleanedMergeValue,
      cleanedMergeCombiner,
      partitioner,
      mapSideCombine)
  }

  /**
   * Return a new DStream by applying `groupByKey` over a sliding window. This is similar to
   * `DStream.groupByKey()` but applies it over a sliding window. The new DStream generates RDDs
   * with the same interval as this DStream. Hash partitioning is used to generate the RDDs with
   * Spark's default number of partitions.
   * @param windowDuration width of the window; must be a multiple of this DStream's
   *                       batching interval
   */
  def groupByKeyAndWindow(windowDuration: Duration): DStream[(K, Iterable[V])] = ssc.withScope {
    groupByKeyAndWindow(windowDuration, self.slideDuration, defaultPartitioner())
  }

  /**
   * Return a new DStream by applying `groupByKey` over a sliding window. Similar to
   * `DStream.groupByKey()`, but applies it over a sliding window. Hash partitioning is used to
   * generate the RDDs with Spark's default number of partitions.
   * @param windowDuration width of the window; must be a multiple of this DStream's
   *                       batching interval
   * @param slideDuration  sliding interval of the window (i.e., the interval after which
   *                       the new DStream will generate RDDs); must be a multiple of this
   *                       DStream's batching interval
   */
  def groupByKeyAndWindow(windowDuration: Duration, slideDuration: Duration)
      : DStream[(K, Iterable[V])] = ssc.withScope {
    groupByKeyAndWindow(windowDuration, slideDuration, defaultPartitioner())
  }

  /**
   * Return a new DStream by applying `groupByKey` over a sliding window on `this` DStream.
   * Similar to `DStream.groupByKey()`, but applies it over a sliding window.
   * Hash partitioning is used to generate the RDDs with `numPartitions` partitions.
   * @param windowDuration width of the window; must be a multiple of this DStream's
   *                       batching interval
   * @param slideDuration  sliding interval of the window (i.e., the interval after which
   *                       the new DStream will generate RDDs); must be a multiple of this
   *                       DStream's batching interval
   * @param numPartitions  number of partitions of each RDD in the new DStream; if not specified
   *                       then Spark's default number of partitions will be used
   */
  def groupByKeyAndWindow(
      windowDuration: Duration,
      slideDuration: Duration,
      numPartitions: Int
    ): DStream[(K, Iterable[V])] = ssc.withScope {
    groupByKeyAndWindow(windowDuration, slideDuration, defaultPartitioner(numPartitions))
  }

  /**
   * Create a new DStream by applying `groupByKey` over a sliding window on `this` DStream.
   * Similar to `DStream.groupByKey()`, but applies it over a sliding window.
   * @param windowDuration width of the window; must be a multiple of this DStream's
   *                       batching interval
   * @param slideDuration  sliding interval of the window (i.e., the interval after which
   *                       the new DStream will generate RDDs); must be a multiple of this
   *                       DStream's batching interval
   * @param partitioner    partitioner for controlling the partitioning of each RDD in the new
   *                       DStream.
   */
  def groupByKeyAndWindow(
      windowDuration: Duration,
      slideDuration: Duration,
      partitioner: Partitioner
    ): DStream[(K, Iterable[V])] = ssc.withScope {
    val createCombiner = (v: Iterable[V]) => new ArrayBuffer[V] ++= v
    val mergeValue = (buf: ArrayBuffer[V], v: Iterable[V]) => buf ++= v
    val mergeCombiner = (buf1: ArrayBuffer[V], buf2: ArrayBuffer[V]) => buf1 ++= buf2
    self.groupByKey(partitioner)
        .window(windowDuration, slideDuration)
        .combineByKey[ArrayBuffer[V]](createCombiner, mergeValue, mergeCombiner, partitioner)
        .asInstanceOf[DStream[(K, Iterable[V])]]
  }

  /**
   * Return a new DStream by applying `reduceByKey` over a sliding window on `this` DStream.
   * Similar to `DStream.reduceByKey()`, but applies it over a sliding window. The new DStream
   * generates RDDs with the same interval as this DStream. Hash partitioning is used to generate
   * the RDDs with Spark's default number of partitions.
   * @param reduceFunc associative and commutative reduce function
   * @param windowDuration width of the window; must be a multiple of this DStream's
   *                       batching interval
   */
  def reduceByKeyAndWindow(
      reduceFunc: (V, V) => V,
      windowDuration: Duration
    ): DStream[(K, V)] = ssc.withScope {
    reduceByKeyAndWindow(reduceFunc, windowDuration, self.slideDuration, defaultPartitioner())
  }

  /**
   * Return a new DStream by applying `reduceByKey` over a sliding window. This is similar to
   * `DStream.reduceByKey()` but applies it over a sliding window. Hash partitioning is used to
   * generate the RDDs with Spark's default number of partitions.
   * @param reduceFunc associative and commutative reduce function
   * @param windowDuration width of the window; must be a multiple of this DStream's
   *                       batching interval
   * @param slideDuration  sliding interval of the window (i.e., the interval after which
   *                       the new DStream will generate RDDs); must be a multiple of this
   *                       DStream's batching interval
   */
  def reduceByKeyAndWindow(
      reduceFunc: (V, V) => V,
      windowDuration: Duration,
      slideDuration: Duration
    ): DStream[(K, V)] = ssc.withScope {
    reduceByKeyAndWindow(reduceFunc, windowDuration, slideDuration, defaultPartitioner())
  }

  /**
   * Return a new DStream by applying `reduceByKey` over a sliding window. This is similar to
   * `DStream.reduceByKey()` but applies it over a sliding window. Hash partitioning is used to
   * generate the RDDs with `numPartitions` partitions.
   * @param reduceFunc associative and commutative reduce function
   * @param windowDuration width of the window; must be a multiple of this DStream's
   *                       batching interval
   * @param slideDuration  sliding interval of the window (i.e., the interval after which
   *                       the new DStream will generate RDDs); must be a multiple of this
   *                       DStream's batching interval
   * @param numPartitions  number of partitions of each RDD in the new DStream.
   */
  def reduceByKeyAndWindow(
      reduceFunc: (V, V) => V,
      windowDuration: Duration,
      slideDuration: Duration,
      numPartitions: Int
    ): DStream[(K, V)] = ssc.withScope {
    reduceByKeyAndWindow(reduceFunc, windowDuration, slideDuration,
      defaultPartitioner(numPartitions))
  }

  /**
   * Return a new DStream by applying `reduceByKey` over a sliding window. Similar to
   * `DStream.reduceByKey()`, but applies it over a sliding window.
   * @param reduceFunc associative and commutative reduce function
   * @param windowDuration width of the window; must be a multiple of this DStream's
   *                       batching interval
   * @param slideDuration  sliding interval of the window (i.e., the interval after which
   *                       the new DStream will generate RDDs); must be a multiple of this
   *                       DStream's batching interval
   * @param partitioner    partitioner for controlling the partitioning of each RDD
   *                       in the new DStream.
   */
  def reduceByKeyAndWindow(
      reduceFunc: (V, V) => V,
      windowDuration: Duration,
      slideDuration: Duration,
      partitioner: Partitioner
    ): DStream[(K, V)] = ssc.withScope {
    self.reduceByKey(reduceFunc, partitioner)
        .window(windowDuration, slideDuration)
        .reduceByKey(reduceFunc, partitioner)
  }

  /**
   * Return a new DStream by applying incremental `reduceByKey` over a sliding window.
   * The reduced value of over a new window is calculated using the old window's reduced value :
   *  1. reduce the new values that entered the window (e.g., adding new counts)
   *
   *  2. "inverse reduce" the old values that left the window (e.g., subtracting old counts)
   *
   * This is more efficient than reduceByKeyAndWindow without "inverse reduce" function.
   * However, it is applicable to only "invertible reduce functions".
   * Hash partitioning is used to generate the RDDs with Spark's default number of partitions.
   * @param reduceFunc associative and commutative reduce function
   * @param invReduceFunc inverse reduce function; such that for all y, invertible x:
   *                      `invReduceFunc(reduceFunc(x, y), x) = y`
   * @param windowDuration width of the window; must be a multiple of this DStream's
   *                       batching interval
   * @param slideDuration  sliding interval of the window (i.e., the interval after which
   *                       the new DStream will generate RDDs); must be a multiple of this
   *                       DStream's batching interval
   * @param filterFunc     Optional function to filter expired key-value pairs;
   *                       only pairs that satisfy the function are retained
   */
  def reduceByKeyAndWindow(
      reduceFunc: (V, V) => V,
      invReduceFunc: (V, V) => V,
      windowDuration: Duration,
      slideDuration: Duration = self.slideDuration,
      numPartitions: Int = ssc.sc.defaultParallelism,
      filterFunc: ((K, V)) => Boolean = null
    ): DStream[(K, V)] = ssc.withScope {
    reduceByKeyAndWindow(
      reduceFunc, invReduceFunc, windowDuration,
      slideDuration, defaultPartitioner(numPartitions), filterFunc
    )
  }

  /**
   * Return a new DStream by applying incremental `reduceByKey` over a sliding window.
   * The reduced value of over a new window is calculated using the old window's reduced value :
   *  1. reduce the new values that entered the window (e.g., adding new counts)
   *  2. "inverse reduce" the old values that left the window (e.g., subtracting old counts)
   * This is more efficient than reduceByKeyAndWindow without "inverse reduce" function.
   * However, it is applicable to only "invertible reduce functions".
   * @param reduceFunc     associative and commutative reduce function
   * @param invReduceFunc  inverse reduce function
   * @param windowDuration width of the window; must be a multiple of this DStream's
   *                       batching interval
   * @param slideDuration  sliding interval of the window (i.e., the interval after which
   *                       the new DStream will generate RDDs); must be a multiple of this
   *                       DStream's batching interval
   * @param partitioner    partitioner for controlling the partitioning of each RDD in the new
   *                       DStream.
   * @param filterFunc     Optional function to filter expired key-value pairs;
   *                       only pairs that satisfy the function are retained
   */
  def reduceByKeyAndWindow(
      reduceFunc: (V, V) => V,
      invReduceFunc: (V, V) => V,
      windowDuration: Duration,
      slideDuration: Duration,
      partitioner: Partitioner,
      filterFunc: ((K, V)) => Boolean
    ): DStream[(K, V)] = ssc.withScope {

    val cleanedReduceFunc = ssc.sc.clean(reduceFunc)
    val cleanedInvReduceFunc = ssc.sc.clean(invReduceFunc)
    val cleanedFilterFunc = if (filterFunc != null) Some(ssc.sc.clean(filterFunc)) else None
    new ReducedWindowedDStream[K, V](
      self, cleanedReduceFunc, cleanedInvReduceFunc, cleanedFilterFunc,
      windowDuration, slideDuration, partitioner
    )
  }

  /**
   * Return a [[MapWithStateDStream]] by applying a function to every key-value element of
   * `this` stream, while maintaining some state data for each unique key. The mapping function
   * and other specification (e.g. partitioners, timeouts, initial state data, etc.) of this
   * transformation can be specified using `StateSpec` class. The state data is accessible in
   * as a parameter of type `State` in the mapping function.
   *
   * Example of using `mapWithState`:
   * {{{
   *    // A mapping function that maintains an integer state and return a String
   *    def mappingFunction(key: String, value: Option[Int], state: State[Int]): Option[String] = {
   *      // Use state.exists(), state.get(), state.update() and state.remove()
   *      // to manage state, and return the necessary string
   *    }
   *
   *    val spec = StateSpec.function(mappingFunction).numPartitions(10)
   *
   *    val mapWithStateDStream = keyValueDStream.mapWithState[StateType, MappedType](spec)
   * }}}
   *
   * @param spec          Specification of this transformation
   * @tparam StateType    Class type of the state data
   * @tparam MappedType   Class type of the mapped data
   */
  def mapWithState[StateType: ClassTag, MappedType: ClassTag](
      spec: StateSpec[K, V, StateType, MappedType]
    ): MapWithStateDStream[K, V, StateType, MappedType] = {
    new MapWithStateDStreamImpl[K, V, StateType, MappedType](
      self,
      spec.asInstanceOf[StateSpecImpl[K, V, StateType, MappedType]]
    )
  }

  /**
   * Return a new "state" DStream where the state for each key is updated by applying
   * the given function on the previous state of the key and the new values of each key.
   * In every batch the updateFunc will be called for each state even if there are no new values.
   * Hash partitioning is used to generate the RDDs with Spark's default number of partitions.
   * @param updateFunc State update function. If `this` function returns None, then
   *                   corresponding state key-value pair will be eliminated.
   * @tparam S State type
   */
  def updateStateByKey[S: ClassTag](
      updateFunc: (Seq[V], Option[S]) => Option[S]
    ): DStream[(K, S)] = ssc.withScope {
    updateStateByKey(updateFunc, defaultPartitioner())
  }

  /**
   * Return a new "state" DStream where the state for each key is updated by applying
   * the given function on the previous state of the key and the new values of each key.
   * In every batch the updateFunc will be called for each state even if there are no new values.
   * Hash partitioning is used to generate the RDDs with `numPartitions` partitions.
   * @param updateFunc State update function. If `this` function returns None, then
   *                   corresponding state key-value pair will be eliminated.
   * @param numPartitions Number of partitions of each RDD in the new DStream.
   * @tparam S State type
   */
  def updateStateByKey[S: ClassTag](
      updateFunc: (Seq[V], Option[S]) => Option[S],
      numPartitions: Int
    ): DStream[(K, S)] = ssc.withScope {
    updateStateByKey(updateFunc, defaultPartitioner(numPartitions))
  }

  /**
   * Return a new "state" DStream where the state for each key is updated by applying
   * the given function on the previous state of the key and the new values of the key.
   * In every batch the updateFunc will be called for each state even if there are no new values.
   * [[org.apache.spark.Partitioner]] is used to control the partitioning of each RDD.
   * @param updateFunc State update function. If `this` function returns None, then
   *                   corresponding state key-value pair will be eliminated.
   * @param partitioner Partitioner for controlling the partitioning of each RDD in the new
   *                    DStream.
   * @tparam S State type
   */
  def updateStateByKey[S: ClassTag](
      updateFunc: (Seq[V], Option[S]) => Option[S],
      partitioner: Partitioner
    ): DStream[(K, S)] = ssc.withScope {
    val cleanedUpdateF = sparkContext.clean(updateFunc)
    val newUpdateFunc = (iterator: Iterator[(K, Seq[V], Option[S])]) => {
      iterator.flatMap(t => cleanedUpdateF(t._2, t._3).map(s => (t._1, s)))
    }
    updateStateByKey(newUpdateFunc, partitioner, true)
  }

  /**
   * Return a new "state" DStream where the state for each key is updated by applying
   * the given function on the previous state of the key and the new values of each key.
   * In every batch the updateFunc will be called for each state even if there are no new values.
   * [[org.apache.spark.Partitioner]] is used to control the partitioning of each RDD.
   * @param updateFunc State update function. Note, that this function may generate a different
   *                   tuple with a different key than the input key. Therefore keys may be removed
   *                   or added in this way. It is up to the developer to decide whether to
   *                   remember the partitioner despite the key being changed.
   * @param partitioner Partitioner for controlling the partitioning of each RDD in the new
   *                    DStream
   * @param rememberPartitioner Whether to remember the partitioner object in the generated RDDs.
   * @tparam S State type
   */
  def updateStateByKey[S: ClassTag](
      updateFunc: (Iterator[(K, Seq[V], Option[S])]) => Iterator[(K, S)],
      partitioner: Partitioner,
      rememberPartitioner: Boolean): DStream[(K, S)] = ssc.withScope {
    val cleanedFunc = ssc.sc.clean(updateFunc)
    val newUpdateFunc = (_: Time, it: Iterator[(K, Seq[V], Option[S])]) => {
      cleanedFunc(it)
    }
    new StateDStream(self, newUpdateFunc, partitioner, rememberPartitioner, None)
  }

  /**
   * Return a new "state" DStream where the state for each key is updated by applying
   * the given function on the previous state of the key and the new values of the key.
   * In every batch the updateFunc will be called for each state even if there are no new values.
   * org.apache.spark.Partitioner is used to control the partitioning of each RDD.
   * @param updateFunc State update function. If `this` function returns None, then
   *                   corresponding state key-value pair will be eliminated.
   * @param partitioner Partitioner for controlling the partitioning of each RDD in the new
   *                    DStream.
   * @param initialRDD initial state value of each key.
   * @tparam S State type
   */
  def updateStateByKey[S: ClassTag](
      updateFunc: (Seq[V], Option[S]) => Option[S],
      partitioner: Partitioner,
      initialRDD: RDD[(K, S)]
    ): DStream[(K, S)] = ssc.withScope {
    val cleanedUpdateF = sparkContext.clean(updateFunc)
    val newUpdateFunc = (iterator: Iterator[(K, Seq[V], Option[S])]) => {
      iterator.flatMap(t => cleanedUpdateF(t._2, t._3).map(s => (t._1, s)))
    }
    updateStateByKey(newUpdateFunc, partitioner, true, initialRDD)
  }

  /**
   * Return a new "state" DStream where the state for each key is updated by applying
   * the given function on the previous state of the key and the new values of each key.
   * In every batch the updateFunc will be called for each state even if there are no new values.
   * org.apache.spark.Partitioner is used to control the partitioning of each RDD.
   * @param updateFunc State update function. Note, that this function may generate a different
   *                   tuple with a different key than the input key. Therefore keys may be removed
   *                   or added in this way. It is up to the developer to decide whether to
   *                   remember the  partitioner despite the key being changed.
   * @param partitioner Partitioner for controlling the partitioning of each RDD in the new
   *                    DStream
   * @param rememberPartitioner Whether to remember the partitioner object in the generated RDDs.
   * @param initialRDD initial state value of each key.
   * @tparam S State type
   */
  def updateStateByKey[S: ClassTag](
      updateFunc: (Iterator[(K, Seq[V], Option[S])]) => Iterator[(K, S)],
      partitioner: Partitioner,
      rememberPartitioner: Boolean,
      initialRDD: RDD[(K, S)]): DStream[(K, S)] = ssc.withScope {
    val cleanedFunc = ssc.sc.clean(updateFunc)
    val newUpdateFunc = (_: Time, it: Iterator[(K, Seq[V], Option[S])]) => {
      cleanedFunc(it)
    }
    new StateDStream(self, newUpdateFunc, partitioner, rememberPartitioner, Some(initialRDD))
  }

  /**
   * Return a new "state" DStream where the state for each key is updated by applying
   * the given function on the previous state of the key and the new values of the key.
   * In every batch the updateFunc will be called for each state even if there are no new values.
   * org.apache.spark.Partitioner is used to control the partitioning of each RDD.
   * @param updateFunc State update function. If `this` function returns None, then
   *                   corresponding state key-value pair will be eliminated.
   * @param partitioner Partitioner for controlling the partitioning of each RDD in the new
   *                    DStream.
   * @tparam S State type
   */
  def updateStateByKey[S: ClassTag](updateFunc: (Time, K, Seq[V], Option[S]) => Option[S],
      partitioner: Partitioner,
      rememberPartitioner: Boolean,
      initialRDD: Option[RDD[(K, S)]] = None): DStream[(K, S)] = ssc.withScope {
    val cleanedFunc = ssc.sc.clean(updateFunc)
    val newUpdateFunc = (time: Time, iterator: Iterator[(K, Seq[V], Option[S])]) => {
      iterator.flatMap(t => cleanedFunc(time, t._1, t._2, t._3).map(s => (t._1, s)))
    }
    new StateDStream(self, newUpdateFunc, partitioner, rememberPartitioner, initialRDD)
  }

  /**
   * Return a new DStream by applying a map function to the value of each key-value pairs in
   * 'this' DStream without changing the key.
   */
  def mapValues[U: ClassTag](mapValuesFunc: V => U): DStream[(K, U)] = ssc.withScope {
    new MapValuedDStream[K, V, U](self, sparkContext.clean(mapValuesFunc))
  }

  /**
   * Return a new DStream by applying a flatmap function to the value of each key-value pairs in
   * 'this' DStream without changing the key.
   */
  def flatMapValues[U: ClassTag](
      flatMapValuesFunc: V => TraversableOnce[U]
    ): DStream[(K, U)] = ssc.withScope {
    new FlatMapValuedDStream[K, V, U](self, sparkContext.clean(flatMapValuesFunc))
  }

  /**
   * Return a new DStream by applying 'cogroup' between RDDs of `this` DStream and `other` DStream.
   * Hash partitioning is used to generate the RDDs with Spark's default number
   * of partitions.
   */
  def cogroup[W: ClassTag](
      other: DStream[(K, W)]): DStream[(K, (Iterable[V], Iterable[W]))] = ssc.withScope {
    cogroup(other, defaultPartitioner())
  }

  /**
   * Return a new DStream by applying 'cogroup' between RDDs of `this` DStream and `other` DStream.
   * Hash partitioning is used to generate the RDDs with `numPartitions` partitions.
   */
  def cogroup[W: ClassTag](
      other: DStream[(K, W)],
      numPartitions: Int): DStream[(K, (Iterable[V], Iterable[W]))] = ssc.withScope {
    cogroup(other, defaultPartitioner(numPartitions))
  }

  /**
   * Return a new DStream by applying 'cogroup' between RDDs of `this` DStream and `other` DStream.
   * The supplied org.apache.spark.Partitioner is used to partition the generated RDDs.
   */
  def cogroup[W: ClassTag](
      other: DStream[(K, W)],
      partitioner: Partitioner
    ): DStream[(K, (Iterable[V], Iterable[W]))] = ssc.withScope {
    self.transformWith(
      other,
      (rdd1: RDD[(K, V)], rdd2: RDD[(K, W)]) => rdd1.cogroup(rdd2, partitioner)
    )
  }

  /**
   * Return a new DStream by applying 'join' between RDDs of `this` DStream and `other` DStream.
   * Hash partitioning is used to generate the RDDs with Spark's default number of partitions.
   */
  def join[W: ClassTag](other: DStream[(K, W)]): DStream[(K, (V, W))] = ssc.withScope {
    join[W](other, defaultPartitioner())
  }

  /**
   * Return a new DStream by applying 'join' between RDDs of `this` DStream and `other` DStream.
   * Hash partitioning is used to generate the RDDs with `numPartitions` partitions.
   */
  def join[W: ClassTag](
      other: DStream[(K, W)],
      numPartitions: Int): DStream[(K, (V, W))] = ssc.withScope {
    join[W](other, defaultPartitioner(numPartitions))
  }

  /**
   * Return a new DStream by applying 'join' between RDDs of `this` DStream and `other` DStream.
   * The supplied org.apache.spark.Partitioner is used to control the partitioning of each RDD.
   */
  def join[W: ClassTag](
      other: DStream[(K, W)],
      partitioner: Partitioner
    ): DStream[(K, (V, W))] = ssc.withScope {
    self.transformWith(
      other,
      (rdd1: RDD[(K, V)], rdd2: RDD[(K, W)]) => rdd1.join(rdd2, partitioner)
    )
  }

  /**
   * Return a new DStream by applying 'left outer join' between RDDs of `this` DStream and
   * `other` DStream. Hash partitioning is used to generate the RDDs with Spark's default
   * number of partitions.
   */
  def leftOuterJoin[W: ClassTag](
      other: DStream[(K, W)]): DStream[(K, (V, Option[W]))] = ssc.withScope {
    leftOuterJoin[W](other, defaultPartitioner())
  }

  /**
   * Return a new DStream by applying 'left outer join' between RDDs of `this` DStream and
   * `other` DStream. Hash partitioning is used to generate the RDDs with `numPartitions`
   * partitions.
   */
  def leftOuterJoin[W: ClassTag](
      other: DStream[(K, W)],
      numPartitions: Int
    ): DStream[(K, (V, Option[W]))] = ssc.withScope {
    leftOuterJoin[W](other, defaultPartitioner(numPartitions))
  }

  /**
   * Return a new DStream by applying 'left outer join' between RDDs of `this` DStream and
   * `other` DStream. The supplied org.apache.spark.Partitioner is used to control
   * the partitioning of each RDD.
   */
  def leftOuterJoin[W: ClassTag](
      other: DStream[(K, W)],
      partitioner: Partitioner
    ): DStream[(K, (V, Option[W]))] = ssc.withScope {
    self.transformWith(
      other,
      (rdd1: RDD[(K, V)], rdd2: RDD[(K, W)]) => rdd1.leftOuterJoin(rdd2, partitioner)
    )
  }

  /**
   * Return a new DStream by applying 'right outer join' between RDDs of `this` DStream and
   * `other` DStream. Hash partitioning is used to generate the RDDs with Spark's default
   * number of partitions.
   */
  def rightOuterJoin[W: ClassTag](
      other: DStream[(K, W)]): DStream[(K, (Option[V], W))] = ssc.withScope {
    rightOuterJoin[W](other, defaultPartitioner())
  }

  /**
   * Return a new DStream by applying 'right outer join' between RDDs of `this` DStream and
   * `other` DStream. Hash partitioning is used to generate the RDDs with `numPartitions`
   * partitions.
   */
  def rightOuterJoin[W: ClassTag](
      other: DStream[(K, W)],
      numPartitions: Int
    ): DStream[(K, (Option[V], W))] = ssc.withScope {
    rightOuterJoin[W](other, defaultPartitioner(numPartitions))
  }

  /**
   * Return a new DStream by applying 'right outer join' between RDDs of `this` DStream and
   * `other` DStream. The supplied org.apache.spark.Partitioner is used to control
   * the partitioning of each RDD.
   */
  def rightOuterJoin[W: ClassTag](
      other: DStream[(K, W)],
      partitioner: Partitioner
    ): DStream[(K, (Option[V], W))] = ssc.withScope {
    self.transformWith(
      other,
      (rdd1: RDD[(K, V)], rdd2: RDD[(K, W)]) => rdd1.rightOuterJoin(rdd2, partitioner)
    )
  }

  /**
   * Return a new DStream by applying 'full outer join' between RDDs of `this` DStream and
   * `other` DStream. Hash partitioning is used to generate the RDDs with Spark's default
   * number of partitions.
   */
  def fullOuterJoin[W: ClassTag](
      other: DStream[(K, W)]): DStream[(K, (Option[V], Option[W]))] = ssc.withScope {
    fullOuterJoin[W](other, defaultPartitioner())
  }

  /**
   * Return a new DStream by applying 'full outer join' between RDDs of `this` DStream and
   * `other` DStream. Hash partitioning is used to generate the RDDs with `numPartitions`
   * partitions.
   */
  def fullOuterJoin[W: ClassTag](
      other: DStream[(K, W)],
      numPartitions: Int
    ): DStream[(K, (Option[V], Option[W]))] = ssc.withScope {
    fullOuterJoin[W](other, defaultPartitioner(numPartitions))
  }

  /**
   * Return a new DStream by applying 'full outer join' between RDDs of `this` DStream and
   * `other` DStream. The supplied org.apache.spark.Partitioner is used to control
   * the partitioning of each RDD.
   */
  def fullOuterJoin[W: ClassTag](
      other: DStream[(K, W)],
      partitioner: Partitioner
    ): DStream[(K, (Option[V], Option[W]))] = ssc.withScope {
    self.transformWith(
      other,
      (rdd1: RDD[(K, V)], rdd2: RDD[(K, W)]) => rdd1.fullOuterJoin(rdd2, partitioner)
    )
  }

  /**
   * Save each RDD in `this` DStream as a Hadoop file. The file name at each batch interval
   * is generated based on `prefix` and `suffix`: "prefix-TIME_IN_MS.suffix"
   */
  def saveAsHadoopFiles[F <: OutputFormat[K, V]](
      prefix: String,
      suffix: String
    )(implicit fm: ClassTag[F]): Unit = ssc.withScope {
    saveAsHadoopFiles(prefix, suffix, keyClass, valueClass,
      fm.runtimeClass.asInstanceOf[Class[F]])
  }

  /**
   * Save each RDD in `this` DStream as a Hadoop file. The file name at each batch interval
   * is generated based on `prefix` and `suffix`: "prefix-TIME_IN_MS.suffix"
   */
  def saveAsHadoopFiles(
      prefix: String,
      suffix: String,
      keyClass: Class[_],
      valueClass: Class[_],
      outputFormatClass: Class[_ <: OutputFormat[_, _]],
      conf: JobConf = new JobConf(ssc.sparkContext.hadoopConfiguration)
    ): Unit = ssc.withScope {
    // Wrap conf in SerializableWritable so that ForeachDStream can be serialized for checkpoints
    val serializableConf = new SerializableJobConf(conf)
    val saveFunc = (rdd: RDD[(K, V)], time: Time) => {
      val file = rddToFileName(prefix, suffix, time)
      rdd.saveAsHadoopFile(file, keyClass, valueClass, outputFormatClass,
        new JobConf(serializableConf.value))
    }
    self.foreachRDD(saveFunc)
  }

  /**
   * Save each RDD in `this` DStream as a Hadoop file. The file name at each batch interval is
   * generated based on `prefix` and `suffix`: "prefix-TIME_IN_MS.suffix".
   */
  def saveAsNewAPIHadoopFiles[F <: NewOutputFormat[K, V]](
      prefix: String,
      suffix: String
    )(implicit fm: ClassTag[F]): Unit = ssc.withScope {
    saveAsNewAPIHadoopFiles(prefix, suffix, keyClass, valueClass,
      fm.runtimeClass.asInstanceOf[Class[F]])
  }

  /**
   * Save each RDD in `this` DStream as a Hadoop file. The file name at each batch interval is
   * generated based on `prefix` and `suffix`: "prefix-TIME_IN_MS.suffix".
   */
  def saveAsNewAPIHadoopFiles(
      prefix: String,
      suffix: String,
      keyClass: Class[_],
      valueClass: Class[_],
      outputFormatClass: Class[_ <: NewOutputFormat[_, _]],
      conf: Configuration = ssc.sparkContext.hadoopConfiguration
    ): Unit = ssc.withScope {
    // Wrap conf in SerializableWritable so that ForeachDStream can be serialized for checkpoints
    val serializableConf = new SerializableConfiguration(conf)
    val saveFunc = (rdd: RDD[(K, V)], time: Time) => {
      val file = rddToFileName(prefix, suffix, time)
      rdd.saveAsNewAPIHadoopFile(
        file, keyClass, valueClass, outputFormatClass, serializableConf.value)
    }
    self.foreachRDD(saveFunc)
  }

  private def keyClass: Class[_] = kt.runtimeClass

  private def valueClass: Class[_] = vt.runtimeClass
}

相关信息

spark 源码目录

相关文章

spark ConstantInputDStream 源码

spark DStream 源码

spark DStreamCheckpointData 源码

spark FileInputDStream 源码

spark FilteredDStream 源码

spark FlatMapValuedDStream 源码

spark FlatMappedDStream 源码

spark ForEachDStream 源码

spark GlommedDStream 源码

spark InputDStream 源码

0  赞