spark SparkHadoopUtil 源码

  • 2022-10-20
  • 浏览 (361)

spark SparkHadoopUtil 代码

文件路径:/core/src/main/scala/org/apache/spark/deploy/SparkHadoopUtil.scala

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.spark.deploy

import java.io.{ByteArrayInputStream, ByteArrayOutputStream, DataInputStream, DataOutputStream, File, IOException}
import java.net.InetAddress
import java.security.PrivilegedExceptionAction
import java.text.DateFormat
import java.util.{Arrays, Date, Locale}

import scala.collection.JavaConverters._
import scala.collection.immutable.Map
import scala.collection.mutable
import scala.collection.mutable.HashMap
import scala.util.control.NonFatal

import com.google.common.primitives.Longs
import org.apache.hadoop.conf.Configuration
import org.apache.hadoop.fs._
import org.apache.hadoop.mapred.JobConf
import org.apache.hadoop.security.{Credentials, UserGroupInformation}
import org.apache.hadoop.security.token.{Token, TokenIdentifier}
import org.apache.hadoop.security.token.delegation.AbstractDelegationTokenIdentifier

import org.apache.spark.{SparkConf, SparkException}
import org.apache.spark.internal.Logging
import org.apache.spark.internal.config.BUFFER_SIZE
import org.apache.spark.util.Utils

/**
 * Contains util methods to interact with Hadoop from Spark.
 */
private[spark] class SparkHadoopUtil extends Logging {
  private val sparkConf = new SparkConf(false).loadFromSystemProperties(true)
  val conf: Configuration = newConfiguration(sparkConf)
  UserGroupInformation.setConfiguration(conf)

  /**
   * Runs the given function with a Hadoop UserGroupInformation as a thread local variable
   * (distributed to child threads), used for authenticating HDFS and YARN calls.
   *
   * IMPORTANT NOTE: If this function is going to be called repeated in the same process
   * you need to look https://issues.apache.org/jira/browse/HDFS-3545 and possibly
   * do a FileSystem.closeAllForUGI in order to avoid leaking Filesystems
   */
  def runAsSparkUser(func: () => Unit): Unit = {
    createSparkUser().doAs(new PrivilegedExceptionAction[Unit] {
      def run: Unit = func()
    })
  }

  def createSparkUser(): UserGroupInformation = {
    val user = Utils.getCurrentUserName()
    logDebug("creating UGI for user: " + user)
    val ugi = UserGroupInformation.createRemoteUser(user)
    transferCredentials(UserGroupInformation.getCurrentUser(), ugi)
    ugi
  }

  def transferCredentials(source: UserGroupInformation, dest: UserGroupInformation): Unit = {
    dest.addCredentials(source.getCredentials())
  }

  /**
   * Appends S3-specific, spark.hadoop.*, and spark.buffer.size configurations to a Hadoop
   * configuration.
   */
  def appendS3AndSparkHadoopHiveConfigurations(
      conf: SparkConf,
      hadoopConf: Configuration): Unit = {
    SparkHadoopUtil.appendS3AndSparkHadoopHiveConfigurations(conf, hadoopConf)
  }

  /**
   * Appends spark.hadoop.* configurations from a [[SparkConf]] to a Hadoop
   * configuration without the spark.hadoop. prefix.
   */
  def appendSparkHadoopConfigs(conf: SparkConf, hadoopConf: Configuration): Unit = {
    SparkHadoopUtil.appendSparkHadoopConfigs(conf, hadoopConf)
  }

  /**
   * Appends spark.hadoop.* configurations from a Map to another without the spark.hadoop. prefix.
   */
  def appendSparkHadoopConfigs(
      srcMap: Map[String, String],
      destMap: HashMap[String, String]): Unit = {
    // Copy any "spark.hadoop.foo=bar" system properties into destMap as "foo=bar"
    for ((key, value) <- srcMap if key.startsWith("spark.hadoop.")) {
      destMap.put(key.substring("spark.hadoop.".length), value)
    }
  }

  def appendSparkHiveConfigs(
      srcMap: Map[String, String],
      destMap: HashMap[String, String]): Unit = {
    // Copy any "spark.hive.foo=bar" system properties into destMap as "hive.foo=bar"
    for ((key, value) <- srcMap if key.startsWith("spark.hive.")) {
      destMap.put(key.substring("spark.".length), value)
    }
  }

  /**
   * Return an appropriate (subclass) of Configuration. Creating config can initialize some Hadoop
   * subsystems.
   */
  def newConfiguration(conf: SparkConf): Configuration = {
    val hadoopConf = SparkHadoopUtil.newConfiguration(conf)
    hadoopConf.addResource(SparkHadoopUtil.SPARK_HADOOP_CONF_FILE)
    hadoopConf
  }

  /**
   * Add any user credentials to the job conf which are necessary for running on a secure Hadoop
   * cluster.
   */
  def addCredentials(conf: JobConf): Unit = {
    val jobCreds = conf.getCredentials()
    jobCreds.mergeAll(UserGroupInformation.getCurrentUser().getCredentials())
  }

  def addCurrentUserCredentials(creds: Credentials): Unit = {
    UserGroupInformation.getCurrentUser.addCredentials(creds)
  }

  def loginUserFromKeytab(principalName: String, keytabFilename: String): Unit = {
    if (!new File(keytabFilename).exists()) {
      throw new SparkException(s"Keytab file: ${keytabFilename} does not exist")
    } else {
      logInfo("Attempting to login to Kerberos " +
        s"using principal: ${principalName} and keytab: ${keytabFilename}")
      UserGroupInformation.loginUserFromKeytab(principalName, keytabFilename)
    }
  }

  /**
   * Add or overwrite current user's credentials with serialized delegation tokens,
   * also confirms correct hadoop configuration is set.
   */
  private[spark] def addDelegationTokens(tokens: Array[Byte], sparkConf: SparkConf): Unit = {
    UserGroupInformation.setConfiguration(newConfiguration(sparkConf))
    val creds = deserialize(tokens)
    logInfo("Updating delegation tokens for current user.")
    logDebug(s"Adding/updating delegation tokens ${dumpTokens(creds)}")
    addCurrentUserCredentials(creds)
  }

  /**
   * Returns a function that can be called to find Hadoop FileSystem bytes read. If
   * getFSBytesReadOnThreadCallback is called from thread r at time t, the returned callback will
   * return the bytes read on r since t.
   */
  private[spark] def getFSBytesReadOnThreadCallback(): () => Long = {
    val f = () => FileSystem.getAllStatistics.asScala.map(_.getThreadStatistics.getBytesRead).sum
    val baseline = (Thread.currentThread().getId, f())

    /**
     * This function may be called in both spawned child threads and parent task thread (in
     * PythonRDD), and Hadoop FileSystem uses thread local variables to track the statistics.
     * So we need a map to track the bytes read from the child threads and parent thread,
     * summing them together to get the bytes read of this task.
     */
    new Function0[Long] {
      private val bytesReadMap = new mutable.HashMap[Long, Long]()

      override def apply(): Long = {
        bytesReadMap.synchronized {
          bytesReadMap.put(Thread.currentThread().getId, f())
          bytesReadMap.map { case (k, v) =>
            v - (if (k == baseline._1) baseline._2 else 0)
          }.sum
        }
      }
    }
  }

  /**
   * Returns a function that can be called to find Hadoop FileSystem bytes written. If
   * getFSBytesWrittenOnThreadCallback is called from thread r at time t, the returned callback will
   * return the bytes written on r since t.
   *
   * @return None if the required method can't be found.
   */
  private[spark] def getFSBytesWrittenOnThreadCallback(): () => Long = {
    val threadStats = FileSystem.getAllStatistics.asScala.map(_.getThreadStatistics)
    val f = () => threadStats.map(_.getBytesWritten).sum
    val baselineBytesWritten = f()
    () => f() - baselineBytesWritten
  }

  /**
   * Get [[FileStatus]] objects for all leaf children (files) under the given base path. If the
   * given path points to a file, return a single-element collection containing [[FileStatus]] of
   * that file.
   */
  def listLeafStatuses(fs: FileSystem, basePath: Path): Seq[FileStatus] = {
    listLeafStatuses(fs, fs.getFileStatus(basePath))
  }

  /**
   * Get [[FileStatus]] objects for all leaf children (files) under the given base path. If the
   * given path points to a file, return a single-element collection containing [[FileStatus]] of
   * that file.
   */
  def listLeafStatuses(fs: FileSystem, baseStatus: FileStatus): Seq[FileStatus] = {
    def recurse(status: FileStatus): Seq[FileStatus] = {
      val (directories, leaves) = fs.listStatus(status.getPath).partition(_.isDirectory)
      leaves ++ directories.flatMap(f => listLeafStatuses(fs, f))
    }

    if (baseStatus.isDirectory) recurse(baseStatus) else Seq(baseStatus)
  }

  def listLeafDirStatuses(fs: FileSystem, basePath: Path): Seq[FileStatus] = {
    listLeafDirStatuses(fs, fs.getFileStatus(basePath))
  }

  def listLeafDirStatuses(fs: FileSystem, baseStatus: FileStatus): Seq[FileStatus] = {
    def recurse(status: FileStatus): Seq[FileStatus] = {
      val (directories, files) = fs.listStatus(status.getPath).partition(_.isDirectory)
      val leaves = if (directories.isEmpty) Seq(status) else Seq.empty[FileStatus]
      leaves ++ directories.flatMap(dir => listLeafDirStatuses(fs, dir))
    }

    assert(baseStatus.isDirectory)
    recurse(baseStatus)
  }

  def isGlobPath(pattern: Path): Boolean = {
    pattern.toString.exists("{}[]*?\\".toSet.contains)
  }

  def globPath(pattern: Path): Seq[Path] = {
    val fs = pattern.getFileSystem(conf)
    globPath(fs, pattern)
  }

  def globPath(fs: FileSystem, pattern: Path): Seq[Path] = {
    Option(fs.globStatus(pattern)).map { statuses =>
      statuses.map(_.getPath.makeQualified(fs.getUri, fs.getWorkingDirectory)).toSeq
    }.getOrElse(Seq.empty[Path])
  }

  def globPathIfNecessary(pattern: Path): Seq[Path] = {
    if (isGlobPath(pattern)) globPath(pattern) else Seq(pattern)
  }

  def globPathIfNecessary(fs: FileSystem, pattern: Path): Seq[Path] = {
    if (isGlobPath(pattern)) globPath(fs, pattern) else Seq(pattern)
  }

  /**
   * Lists all the files in a directory with the specified prefix, and does not end with the
   * given suffix. The returned {{FileStatus}} instances are sorted by the modification times of
   * the respective files.
   */
  def listFilesSorted(
      remoteFs: FileSystem,
      dir: Path,
      prefix: String,
      exclusionSuffix: String): Array[FileStatus] = {
    try {
      val fileStatuses = remoteFs.listStatus(dir,
        new PathFilter {
          override def accept(path: Path): Boolean = {
            val name = path.getName
            name.startsWith(prefix) && !name.endsWith(exclusionSuffix)
          }
        })
      Arrays.sort(fileStatuses, (o1: FileStatus, o2: FileStatus) =>
        Longs.compare(o1.getModificationTime, o2.getModificationTime))
      fileStatuses
    } catch {
      case NonFatal(e) =>
        logWarning("Error while attempting to list files from application staging dir", e)
        Array.empty
    }
  }

  private[spark] def getSuffixForCredentialsPath(credentialsPath: Path): Int = {
    val fileName = credentialsPath.getName
    fileName.substring(
      fileName.lastIndexOf(SparkHadoopUtil.SPARK_YARN_CREDS_COUNTER_DELIM) + 1).toInt
  }


  private val HADOOP_CONF_PATTERN = "(\\$\\{hadoopconf-[^\\}\\$\\s]+\\})".r.unanchored

  /**
   * Substitute variables by looking them up in Hadoop configs. Only variables that match the
   * ${hadoopconf- .. } pattern are substituted.
   */
  def substituteHadoopVariables(text: String, hadoopConf: Configuration): String = {
    text match {
      case HADOOP_CONF_PATTERN(matched) =>
        logDebug(text + " matched " + HADOOP_CONF_PATTERN)
        val key = matched.substring(13, matched.length() - 1) // remove ${hadoopconf- .. }
        val eval = Option[String](hadoopConf.get(key))
          .map { value =>
            logDebug("Substituted " + matched + " with " + value)
            text.replace(matched, value)
          }
        if (eval.isEmpty) {
          // The variable was not found in Hadoop configs, so return text as is.
          text
        } else {
          // Continue to substitute more variables.
          substituteHadoopVariables(eval.get, hadoopConf)
        }
      case _ =>
        logDebug(text + " didn't match " + HADOOP_CONF_PATTERN)
        text
    }
  }

  /**
   * Dump the credentials' tokens to string values.
   *
   * @param credentials credentials
   * @return an iterator over the string values. If no credentials are passed in: an empty list
   */
  private[spark] def dumpTokens(credentials: Credentials): Iterable[String] = {
    if (credentials != null) {
      credentials.getAllTokens.asScala.map(tokenToString)
    } else {
      Seq.empty
    }
  }

  /**
   * Convert a token to a string for logging.
   * If its an abstract delegation token, attempt to unmarshall it and then
   * print more details, including timestamps in human-readable form.
   *
   * @param token token to convert to a string
   * @return a printable string value.
   */
  private[spark] def tokenToString(token: Token[_ <: TokenIdentifier]): String = {
    val df = DateFormat.getDateTimeInstance(DateFormat.SHORT, DateFormat.SHORT, Locale.US)
    val buffer = new StringBuilder(128)
    buffer.append(token.toString)
    try {
      val ti = token.decodeIdentifier
      buffer.append("; ").append(ti)
      ti match {
        case dt: AbstractDelegationTokenIdentifier =>
          // include human times and the renewer, which the HDFS tokens toString omits
          buffer.append("; Renewer: ").append(dt.getRenewer)
          buffer.append("; Issued: ").append(df.format(new Date(dt.getIssueDate)))
          buffer.append("; Max Date: ").append(df.format(new Date(dt.getMaxDate)))
        case _ =>
      }
    } catch {
      case e: IOException =>
        logDebug(s"Failed to decode $token: $e", e)
    }
    buffer.toString
  }

  def serialize(creds: Credentials): Array[Byte] = {
    val byteStream = new ByteArrayOutputStream
    val dataStream = new DataOutputStream(byteStream)
    creds.writeTokenStorageToStream(dataStream)
    byteStream.toByteArray
  }

  def deserialize(tokenBytes: Array[Byte]): Credentials = {
    val tokensBuf = new ByteArrayInputStream(tokenBytes)

    val creds = new Credentials()
    creds.readTokenStorageStream(new DataInputStream(tokensBuf))
    creds
  }

  def isProxyUser(ugi: UserGroupInformation): Boolean = {
    ugi.getAuthenticationMethod() == UserGroupInformation.AuthenticationMethod.PROXY
  }

}

private[spark] object SparkHadoopUtil extends Logging {

  private lazy val instance = new SparkHadoopUtil

  val SPARK_YARN_CREDS_TEMP_EXTENSION = ".tmp"

  val SPARK_YARN_CREDS_COUNTER_DELIM = "-"

  /**
   * Number of records to update input metrics when reading from HadoopRDDs.
   *
   * Each update is potentially expensive because we need to use reflection to access the
   * Hadoop FileSystem API of interest (only available in 2.5), so we should do this sparingly.
   */
  private[spark] val UPDATE_INPUT_METRICS_INTERVAL_RECORDS = 1000

  /**
   * Name of the file containing the gateway's Hadoop configuration, to be overlayed on top of the
   * cluster's Hadoop config. It is up to the Spark code launching the application to create
   * this file if it's desired. If the file doesn't exist, it will just be ignored.
   */
  private[spark] val SPARK_HADOOP_CONF_FILE = "__spark_hadoop_conf__.xml"

  /**
   * Source for hive-site.xml configuration options.
   */
  private[deploy] val SOURCE_HIVE_SITE = "Set by Spark from hive-site.xml"

  /**
   * Source for configuration options set by spark when another source is
   * not explicitly declared.
   */
  private[spark] val SOURCE_SPARK = "Set by Spark"

  /**
   * Source for configuration options with `spark.hadoop.` prefix copied
   * from spark-defaults.
   */
  private[deploy] val SOURCE_SPARK_HADOOP =
    "Set by Spark from keys starting with 'spark.hadoop'"

  /*
   * The AWS Authentication environment variables documented in
   * https://docs.aws.amazon.com/sdkref/latest/guide/environment-variables.html.
   * There are alternative names defined in `com.amazonaws.SDKGlobalConfiguration`
   * and which are picked up by the authentication provider
   * `EnvironmentVariableCredentialsProvider`; those are not propagated.
   */

  /**
   * AWS Access key.
   */
  private[deploy] val ENV_VAR_AWS_ACCESS_KEY = "AWS_ACCESS_KEY_ID"

  /**
   * AWS Secret Key.
   */
  private[deploy] val ENV_VAR_AWS_SECRET_KEY = "AWS_SECRET_ACCESS_KEY"

  /**
   * AWS Session token.
   */
  private[deploy] val ENV_VAR_AWS_SESSION_TOKEN = "AWS_SESSION_TOKEN"

  /**
   * Source for configuration options with `spark.hive.` prefix copied
   * from spark-defaults.
   */
  private[deploy] val SOURCE_SPARK_HIVE = "Set by Spark from keys starting with 'spark.hive'"

  /**
   * Hadoop configuration options set to their default values.
   */
  private[deploy] val SET_TO_DEFAULT_VALUES = "Set by Spark to default values"

  def get: SparkHadoopUtil = instance

  /**
   * Returns a Configuration object with Spark configuration applied on top. Unlike
   * the instance method, this will always return a Configuration instance, and not a
   * cluster manager-specific type.
   * The configuration will load all default values set in core-default.xml,
   * and if found on the classpath, those of core-site.xml.
   * This is done before the spark overrides are applied.
   */
  private[spark] def newConfiguration(conf: SparkConf): Configuration = {
    val hadoopConf = new Configuration()
    appendS3AndSparkHadoopHiveConfigurations(conf, hadoopConf)
    hadoopConf
  }

  private def appendS3AndSparkHadoopHiveConfigurations(
      conf: SparkConf,
      hadoopConf: Configuration): Unit = {
    // Note: this null check is around more than just access to the "conf" object to maintain
    // the behavior of the old implementation of this code, for backwards compatibility.
    if (conf != null) {
      appendS3CredentialsFromEnvironment(hadoopConf,
        System.getenv(ENV_VAR_AWS_ACCESS_KEY),
        System.getenv(ENV_VAR_AWS_SECRET_KEY),
        System.getenv(ENV_VAR_AWS_SESSION_TOKEN))
      appendHiveConfigs(hadoopConf)
      appendSparkHadoopConfigs(conf, hadoopConf)
      appendSparkHiveConfigs(conf, hadoopConf)
      val bufferSize = conf.get(BUFFER_SIZE).toString
      hadoopConf.set("io.file.buffer.size", bufferSize, BUFFER_SIZE.key)
    }
  }

  /**
   * Append any AWS secrets from the environment variables
   * if both `AWS_ACCESS_KEY_ID` and `AWS_SECRET_ACCESS_KEY` are set.
   * If these two are set and `AWS_SESSION_TOKEN` is also set,
   * then `fs.s3a.session.token`.
   * The option is set with a source string which includes the hostname
   * on which it was set. This can help debug propagation issues.
   *
   * @param hadoopConf configuration to patch
   * @param keyId key ID or null
   * @param accessKey secret key
   * @param sessionToken session token.
   */
  // Exposed for testing
  private[deploy] def appendS3CredentialsFromEnvironment(
      hadoopConf: Configuration,
      keyId: String,
      accessKey: String,
      sessionToken: String): Unit = {
    if (keyId != null && accessKey != null) {
      // source prefix string; will have environment variable added
      val source = SOURCE_SPARK + " on " + InetAddress.getLocalHost.toString + " from "
      hadoopConf.set("fs.s3.awsAccessKeyId", keyId, source + ENV_VAR_AWS_ACCESS_KEY)
      hadoopConf.set("fs.s3n.awsAccessKeyId", keyId, source + ENV_VAR_AWS_ACCESS_KEY)
      hadoopConf.set("fs.s3a.access.key", keyId, source + ENV_VAR_AWS_ACCESS_KEY)
      hadoopConf.set("fs.s3.awsSecretAccessKey", accessKey, source + ENV_VAR_AWS_SECRET_KEY)
      hadoopConf.set("fs.s3n.awsSecretAccessKey", accessKey, source + ENV_VAR_AWS_SECRET_KEY)
      hadoopConf.set("fs.s3a.secret.key", accessKey, source + ENV_VAR_AWS_SECRET_KEY)

      // look for session token if the other variables were set
      if (sessionToken != null) {
        hadoopConf.set("fs.s3a.session.token", sessionToken,
          source + ENV_VAR_AWS_SESSION_TOKEN)
      }
    }
  }

  private lazy val hiveConfKeys = {
    val configFile = Utils.getContextOrSparkClassLoader.getResource("hive-site.xml")
    if (configFile != null) {
      val conf = new Configuration(false)
      conf.addResource(configFile)
      conf.iterator().asScala.toSeq
    } else {
      Nil
    }
  }

  private def appendHiveConfigs(hadoopConf: Configuration): Unit = {
    hiveConfKeys.foreach { kv =>
      hadoopConf.set(kv.getKey, kv.getValue, SOURCE_HIVE_SITE)
    }
  }

  private def appendSparkHadoopConfigs(conf: SparkConf, hadoopConf: Configuration): Unit = {
    // Copy any "spark.hadoop.foo=bar" spark properties into conf as "foo=bar"
    for ((key, value) <- conf.getAll if key.startsWith("spark.hadoop.")) {
      hadoopConf.set(key.substring("spark.hadoop.".length), value,
        SOURCE_SPARK_HADOOP)
    }
    val setBySpark = SET_TO_DEFAULT_VALUES
    if (conf.getOption("spark.hadoop.mapreduce.fileoutputcommitter.algorithm.version").isEmpty) {
      hadoopConf.set("mapreduce.fileoutputcommitter.algorithm.version", "1", setBySpark)
    }
    // In Hadoop 3.3.1, HADOOP-17597 starts to throw exceptions by default
    // this has been reverted in 3.3.2 (HADOOP-17928); setting it to
    // true here is harmless
    if (conf.getOption("spark.hadoop.fs.s3a.downgrade.syncable.exceptions").isEmpty) {
      hadoopConf.set("fs.s3a.downgrade.syncable.exceptions", "true", setBySpark)
    }
    // In Hadoop 3.3.1, AWS region handling with the default "" endpoint only works
    // in EC2 deployments or when the AWS CLI is installed.
    // The workaround is to set the name of the S3 endpoint explicitly,
    // if not already set. See HADOOP-17771.
    if (hadoopConf.get("fs.s3a.endpoint", "").isEmpty &&
      hadoopConf.get("fs.s3a.endpoint.region") == null) {
      // set to US central endpoint which can also connect to buckets
      // in other regions at the expense of a HEAD request during fs creation
      hadoopConf.set("fs.s3a.endpoint", "s3.amazonaws.com", setBySpark)
    }
  }

  private def appendSparkHiveConfigs(conf: SparkConf, hadoopConf: Configuration): Unit = {
    // Copy any "spark.hive.foo=bar" spark properties into conf as "hive.foo=bar"
    for ((key, value) <- conf.getAll if key.startsWith("spark.hive.")) {
      hadoopConf.set(key.substring("spark.".length), value, SOURCE_SPARK_HIVE)
    }
  }

  /**
   * Extract the sources of a configuration key, or a default value if
   * the key is not found or it has no known sources.
   * Note that options provided by credential providers (JCEKS stores etc)
   * are not resolved, so values retrieved by Configuration.getPassword()
   * may not be recorded as having an origin.
   * @param hadoopConf hadoop configuration to examine.
   * @param key key to look up
   * @return the origin of the current entry in the configuration, or the empty string.
   */
  def propertySources(hadoopConf: Configuration, key: String): String = {
    val sources = hadoopConf.getPropertySources(key)
    if (sources != null && sources.nonEmpty) {
      sources.mkString(",")
    } else {
      ""
    }
  }

  // scalastyle:off line.size.limit
  /**
   * Create a file on the given file system, optionally making sure erasure coding is disabled.
   *
   * Disabling EC can be helpful as HDFS EC doesn't support hflush(), hsync(), or append().
   * https://hadoop.apache.org/docs/r3.0.0/hadoop-project-dist/hadoop-hdfs/HDFSErasureCoding.html#Limitations
   */
  // scalastyle:on line.size.limit
  def createFile(fs: FileSystem, path: Path, allowEC: Boolean): FSDataOutputStream = {
    if (allowEC) {
      fs.create(path)
    } else {
      try {
        // Use reflection as this uses APIs only available in Hadoop 3
        val builderMethod = fs.getClass().getMethod("createFile", classOf[Path])
        // the builder api does not resolve relative paths, nor does it create parent dirs, while
        // the old api does.
        if (!fs.mkdirs(path.getParent())) {
          throw new IOException(s"Failed to create parents of $path")
        }
        val qualifiedPath = fs.makeQualified(path)
        val builder = builderMethod.invoke(fs, qualifiedPath)
        val builderCls = builder.getClass()
        // this may throw a NoSuchMethodException if the path is not on hdfs
        val replicateMethod = builderCls.getMethod("replicate")
        val buildMethod = builderCls.getMethod("build")
        val b2 = replicateMethod.invoke(builder)
        buildMethod.invoke(b2).asInstanceOf[FSDataOutputStream]
      } catch {
        case  _: NoSuchMethodException =>
          // No createFile() method, we're using an older hdfs client, which doesn't give us control
          // over EC vs. replication.  Older hdfs doesn't have EC anyway, so just create a file with
          // old apis.
          fs.create(path)
      }
    }
  }

}

相关信息

spark 源码目录

相关文章

spark ApplicationDescription 源码

spark Client 源码

spark ClientArguments 源码

spark Command 源码

spark DeployMessage 源码

spark DriverDescription 源码

spark ExecutorDescription 源码

spark ExecutorState 源码

spark ExternalShuffleService 源码

spark ExternalShuffleServiceSource 源码

0  赞