airflow example_cloud_storage_transfer_service_aws 源码
airflow example_cloud_storage_transfer_service_aws 代码
文件路径:/airflow/providers/google/cloud/example_dags/example_cloud_storage_transfer_service_aws.py
#
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""
Example Airflow DAG that demonstrates interactions with Google Cloud Transfer. This DAG relies on
the following OS environment variables
Note that you need to provide a large enough set of data so that operations do not execute too quickly.
Otherwise, DAG will fail.
* GCP_PROJECT_ID - Google Cloud Project to use for the Google Cloud Transfer Service.
* GCP_DESCRIPTION - Description of transfer job
* GCP_TRANSFER_SOURCE_AWS_BUCKET - Amazon Web Services Storage bucket from which files are copied.
* GCP_TRANSFER_SECOND_TARGET_BUCKET - Google Cloud Storage bucket to which files are copied
* WAIT_FOR_OPERATION_POKE_INTERVAL - interval of what to check the status of the operation
A smaller value than the default value accelerates the system test and ensures its correct execution with
smaller quantities of files in the source bucket
Look at documentation of :class:`~airflow.operators.sensors.BaseSensorOperator` for more information
"""
from __future__ import annotations
import os
from datetime import datetime, timedelta
from airflow import models
from airflow.models.baseoperator import chain
from airflow.providers.google.cloud.hooks.cloud_storage_transfer_service import (
ALREADY_EXISTING_IN_SINK,
AWS_S3_DATA_SOURCE,
BUCKET_NAME,
DESCRIPTION,
FILTER_JOB_NAMES,
FILTER_PROJECT_ID,
GCS_DATA_SINK,
JOB_NAME,
PROJECT_ID,
SCHEDULE,
SCHEDULE_END_DATE,
SCHEDULE_START_DATE,
START_TIME_OF_DAY,
STATUS,
TRANSFER_OPTIONS,
TRANSFER_SPEC,
GcpTransferJobsStatus,
GcpTransferOperationStatus,
)
from airflow.providers.google.cloud.operators.cloud_storage_transfer_service import (
CloudDataTransferServiceCancelOperationOperator,
CloudDataTransferServiceCreateJobOperator,
CloudDataTransferServiceDeleteJobOperator,
CloudDataTransferServiceGetOperationOperator,
CloudDataTransferServiceListOperationsOperator,
CloudDataTransferServicePauseOperationOperator,
CloudDataTransferServiceResumeOperationOperator,
)
from airflow.providers.google.cloud.sensors.cloud_storage_transfer_service import (
CloudDataTransferServiceJobStatusSensor,
)
GCP_PROJECT_ID = os.environ.get('GCP_PROJECT_ID', 'example-project')
GCP_DESCRIPTION = os.environ.get('GCP_DESCRIPTION', 'description')
GCP_TRANSFER_TARGET_BUCKET = os.environ.get('GCP_TRANSFER_TARGET_BUCKET')
WAIT_FOR_OPERATION_POKE_INTERVAL = int(os.environ.get('WAIT_FOR_OPERATION_POKE_INTERVAL', 5))
GCP_TRANSFER_SOURCE_AWS_BUCKET = os.environ.get('GCP_TRANSFER_SOURCE_AWS_BUCKET')
GCP_TRANSFER_FIRST_TARGET_BUCKET = os.environ.get(
'GCP_TRANSFER_FIRST_TARGET_BUCKET', 'gcp-transfer-first-target'
)
GCP_TRANSFER_JOB_NAME = os.environ.get('GCP_TRANSFER_JOB_NAME', 'transferJobs/sampleJob')
# [START howto_operator_gcp_transfer_create_job_body_aws]
aws_to_gcs_transfer_body = {
DESCRIPTION: GCP_DESCRIPTION,
STATUS: GcpTransferJobsStatus.ENABLED,
PROJECT_ID: GCP_PROJECT_ID,
JOB_NAME: GCP_TRANSFER_JOB_NAME,
SCHEDULE: {
SCHEDULE_START_DATE: datetime(2015, 1, 1).date(),
SCHEDULE_END_DATE: datetime(2030, 1, 1).date(),
START_TIME_OF_DAY: (datetime.utcnow() + timedelta(minutes=2)).time(),
},
TRANSFER_SPEC: {
AWS_S3_DATA_SOURCE: {BUCKET_NAME: GCP_TRANSFER_SOURCE_AWS_BUCKET},
GCS_DATA_SINK: {BUCKET_NAME: GCP_TRANSFER_FIRST_TARGET_BUCKET},
TRANSFER_OPTIONS: {ALREADY_EXISTING_IN_SINK: True},
},
}
# [END howto_operator_gcp_transfer_create_job_body_aws]
with models.DAG(
'example_gcp_transfer_aws',
start_date=datetime(2021, 1, 1),
catchup=False,
tags=['example'],
) as dag:
# [START howto_operator_gcp_transfer_create_job]
create_transfer_job_from_aws = CloudDataTransferServiceCreateJobOperator(
task_id="create_transfer_job_from_aws", body=aws_to_gcs_transfer_body
)
# [END howto_operator_gcp_transfer_create_job]
wait_for_operation_to_start = CloudDataTransferServiceJobStatusSensor(
task_id="wait_for_operation_to_start",
job_name="{{task_instance.xcom_pull('create_transfer_job_from_aws')['name']}}",
project_id=GCP_PROJECT_ID,
expected_statuses={GcpTransferOperationStatus.IN_PROGRESS},
poke_interval=WAIT_FOR_OPERATION_POKE_INTERVAL,
)
# [START howto_operator_gcp_transfer_pause_operation]
pause_operation = CloudDataTransferServicePauseOperationOperator(
task_id="pause_operation",
operation_name="{{task_instance.xcom_pull('wait_for_operation_to_start', "
"key='sensed_operations')[0]['name']}}",
)
# [END howto_operator_gcp_transfer_pause_operation]
# [START howto_operator_gcp_transfer_list_operations]
list_operations = CloudDataTransferServiceListOperationsOperator(
task_id="list_operations",
request_filter={
FILTER_PROJECT_ID: GCP_PROJECT_ID,
FILTER_JOB_NAMES: ["{{task_instance.xcom_pull('create_transfer_job_from_aws')['name']}}"],
},
)
# [END howto_operator_gcp_transfer_list_operations]
# [START howto_operator_gcp_transfer_get_operation]
get_operation = CloudDataTransferServiceGetOperationOperator(
task_id="get_operation", operation_name="{{task_instance.xcom_pull('list_operations')[0]['name']}}"
)
# [END howto_operator_gcp_transfer_get_operation]
# [START howto_operator_gcp_transfer_resume_operation]
resume_operation = CloudDataTransferServiceResumeOperationOperator(
task_id="resume_operation", operation_name="{{task_instance.xcom_pull('get_operation')['name']}}"
)
# [END howto_operator_gcp_transfer_resume_operation]
# [START howto_operator_gcp_transfer_wait_operation]
wait_for_operation_to_end = CloudDataTransferServiceJobStatusSensor(
task_id="wait_for_operation_to_end",
job_name="{{task_instance.xcom_pull('create_transfer_job_from_aws')['name']}}",
project_id=GCP_PROJECT_ID,
expected_statuses={GcpTransferOperationStatus.SUCCESS},
poke_interval=WAIT_FOR_OPERATION_POKE_INTERVAL,
)
# [END howto_operator_gcp_transfer_wait_operation]
# [START howto_operator_gcp_transfer_cancel_operation]
cancel_operation = CloudDataTransferServiceCancelOperationOperator(
task_id="cancel_operation",
operation_name="{{task_instance.xcom_pull("
"'wait_for_second_operation_to_start', key='sensed_operations')[0]['name']}}",
)
# [END howto_operator_gcp_transfer_cancel_operation]
# [START howto_operator_gcp_transfer_delete_job]
delete_transfer_from_aws_job = CloudDataTransferServiceDeleteJobOperator(
task_id="delete_transfer_from_aws_job",
job_name="{{task_instance.xcom_pull('create_transfer_job_from_aws')['name']}}",
project_id=GCP_PROJECT_ID,
)
# [END howto_operator_gcp_transfer_delete_job]
chain(
create_transfer_job_from_aws,
wait_for_operation_to_start,
pause_operation,
list_operations,
get_operation,
resume_operation,
wait_for_operation_to_end,
cancel_operation,
delete_transfer_from_aws_job,
)
相关信息
相关文章
airflow example_automl_nl_text_classification 源码
airflow example_automl_nl_text_sentiment 源码
airflow example_automl_tables 源码
airflow example_automl_translation 源码
airflow example_automl_video_intelligence_classification 源码
airflow example_automl_video_intelligence_tracking 源码
airflow example_automl_vision_object_detection 源码
0
赞
热门推荐
-
2、 - 优质文章
-
3、 gate.io
-
8、 golang
-
9、 openharmony
-
10、 Vue中input框自动聚焦