airflow example_bigtable 源码

  • 2022-10-20
  • 浏览 (562)

airflow example_bigtable 代码

文件路径:/airflow/providers/google/cloud/example_dags/example_bigtable.py

# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.
"""
Example Airflow DAG that creates and performs following operations on Cloud Bigtable:
- creates an Instance
- creates a Table
- updates Cluster
- waits for Table replication completeness
- deletes the Table
- deletes the Instance

This DAG relies on the following environment variables:

* GCP_PROJECT_ID - Google Cloud project
* CBT_INSTANCE_ID - desired ID of a Cloud Bigtable instance
* CBT_INSTANCE_DISPLAY_NAME - desired human-readable display name of the Instance
* CBT_INSTANCE_TYPE - type of the Instance, e.g. 1 for DEVELOPMENT
    See https://googleapis.github.io/google-cloud-python/latest/bigtable/instance.html#google.cloud.bigtable.instance.Instance # noqa E501
* CBT_INSTANCE_LABELS - labels to add for the Instance
* CBT_CLUSTER_ID - desired ID of the main Cluster created for the Instance
* CBT_CLUSTER_ZONE - zone in which main Cluster will be created. e.g. europe-west1-b
    See available zones: https://cloud.google.com/bigtable/docs/locations
* CBT_CLUSTER_NODES - initial amount of nodes of the Cluster
* CBT_CLUSTER_NODES_UPDATED - amount of nodes for BigtableClusterUpdateOperator
* CBT_CLUSTER_STORAGE_TYPE - storage for the Cluster, e.g. 1 for SSD
    See https://googleapis.github.io/google-cloud-python/latest/bigtable/instance.html#google.cloud.bigtable.instance.Instance.cluster # noqa E501
* CBT_TABLE_ID - desired ID of the Table
* CBT_POKE_INTERVAL - number of seconds between every attempt of Sensor check
"""
from __future__ import annotations

import json
from datetime import datetime
from os import getenv

from airflow import models
from airflow.providers.google.cloud.operators.bigtable import (
    BigtableCreateInstanceOperator,
    BigtableCreateTableOperator,
    BigtableDeleteInstanceOperator,
    BigtableDeleteTableOperator,
    BigtableUpdateClusterOperator,
    BigtableUpdateInstanceOperator,
)
from airflow.providers.google.cloud.sensors.bigtable import BigtableTableReplicationCompletedSensor

GCP_PROJECT_ID = getenv('GCP_PROJECT_ID', 'example-project')
CBT_INSTANCE_ID = getenv('GCP_BIG_TABLE_INSTANCE_ID', 'some-instance-id')
CBT_INSTANCE_DISPLAY_NAME = getenv('GCP_BIG_TABLE_INSTANCE_DISPLAY_NAME', 'Human-readable name')
CBT_INSTANCE_DISPLAY_NAME_UPDATED = getenv(
    "GCP_BIG_TABLE_INSTANCE_DISPLAY_NAME_UPDATED", f"{CBT_INSTANCE_DISPLAY_NAME} - updated"
)
CBT_INSTANCE_TYPE = getenv('GCP_BIG_TABLE_INSTANCE_TYPE', '2')
CBT_INSTANCE_TYPE_PROD = getenv('GCP_BIG_TABLE_INSTANCE_TYPE_PROD', '1')
CBT_INSTANCE_LABELS = getenv('GCP_BIG_TABLE_INSTANCE_LABELS', '{}')
CBT_INSTANCE_LABELS_UPDATED = getenv('GCP_BIG_TABLE_INSTANCE_LABELS_UPDATED', '{"env": "prod"}')
CBT_CLUSTER_ID = getenv('GCP_BIG_TABLE_CLUSTER_ID', 'some-cluster-id')
CBT_CLUSTER_ZONE = getenv('GCP_BIG_TABLE_CLUSTER_ZONE', 'europe-west1-b')
CBT_CLUSTER_NODES = getenv('GCP_BIG_TABLE_CLUSTER_NODES', '3')
CBT_CLUSTER_NODES_UPDATED = getenv('GCP_BIG_TABLE_CLUSTER_NODES_UPDATED', '5')
CBT_CLUSTER_STORAGE_TYPE = getenv('GCP_BIG_TABLE_CLUSTER_STORAGE_TYPE', '2')
CBT_TABLE_ID = getenv('GCP_BIG_TABLE_TABLE_ID', 'some-table-id')
CBT_POKE_INTERVAL = getenv('GCP_BIG_TABLE_POKE_INTERVAL', '60')


with models.DAG(
    'example_gcp_bigtable_operators',
    start_date=datetime(2021, 1, 1),
    catchup=False,
    tags=['example'],
) as dag:
    # [START howto_operator_gcp_bigtable_instance_create]
    create_instance_task = BigtableCreateInstanceOperator(
        project_id=GCP_PROJECT_ID,
        instance_id=CBT_INSTANCE_ID,
        main_cluster_id=CBT_CLUSTER_ID,
        main_cluster_zone=CBT_CLUSTER_ZONE,
        instance_display_name=CBT_INSTANCE_DISPLAY_NAME,
        instance_type=int(CBT_INSTANCE_TYPE),
        instance_labels=json.loads(CBT_INSTANCE_LABELS),
        cluster_nodes=None,
        cluster_storage_type=int(CBT_CLUSTER_STORAGE_TYPE),
        task_id='create_instance_task',
    )
    create_instance_task2 = BigtableCreateInstanceOperator(
        instance_id=CBT_INSTANCE_ID,
        main_cluster_id=CBT_CLUSTER_ID,
        main_cluster_zone=CBT_CLUSTER_ZONE,
        instance_display_name=CBT_INSTANCE_DISPLAY_NAME,
        instance_type=int(CBT_INSTANCE_TYPE),
        instance_labels=json.loads(CBT_INSTANCE_LABELS),
        cluster_nodes=int(CBT_CLUSTER_NODES),
        cluster_storage_type=int(CBT_CLUSTER_STORAGE_TYPE),
        task_id='create_instance_task2',
    )
    create_instance_task >> create_instance_task2
    # [END howto_operator_gcp_bigtable_instance_create]

    # [START howto_operator_gcp_bigtable_instance_update]
    update_instance_task = BigtableUpdateInstanceOperator(
        instance_id=CBT_INSTANCE_ID,
        instance_display_name=CBT_INSTANCE_DISPLAY_NAME_UPDATED,
        instance_type=int(CBT_INSTANCE_TYPE_PROD),
        instance_labels=json.loads(CBT_INSTANCE_LABELS_UPDATED),
        task_id='update_instance_task',
    )
    # [END howto_operator_gcp_bigtable_instance_update]

    # [START howto_operator_gcp_bigtable_cluster_update]
    cluster_update_task = BigtableUpdateClusterOperator(
        project_id=GCP_PROJECT_ID,
        instance_id=CBT_INSTANCE_ID,
        cluster_id=CBT_CLUSTER_ID,
        nodes=int(CBT_CLUSTER_NODES_UPDATED),
        task_id='update_cluster_task',
    )
    cluster_update_task2 = BigtableUpdateClusterOperator(
        instance_id=CBT_INSTANCE_ID,
        cluster_id=CBT_CLUSTER_ID,
        nodes=int(CBT_CLUSTER_NODES_UPDATED),
        task_id='update_cluster_task2',
    )
    cluster_update_task >> cluster_update_task2
    # [END howto_operator_gcp_bigtable_cluster_update]

    # [START howto_operator_gcp_bigtable_instance_delete]
    delete_instance_task = BigtableDeleteInstanceOperator(
        project_id=GCP_PROJECT_ID,
        instance_id=CBT_INSTANCE_ID,
        task_id='delete_instance_task',
    )
    delete_instance_task2 = BigtableDeleteInstanceOperator(
        instance_id=CBT_INSTANCE_ID,
        task_id='delete_instance_task2',
    )
    # [END howto_operator_gcp_bigtable_instance_delete]

    # [START howto_operator_gcp_bigtable_table_create]
    create_table_task = BigtableCreateTableOperator(
        project_id=GCP_PROJECT_ID,
        instance_id=CBT_INSTANCE_ID,
        table_id=CBT_TABLE_ID,
        task_id='create_table',
    )
    create_table_task2 = BigtableCreateTableOperator(
        instance_id=CBT_INSTANCE_ID,
        table_id=CBT_TABLE_ID,
        task_id='create_table_task2',
    )
    create_table_task >> create_table_task2
    # [END howto_operator_gcp_bigtable_table_create]

    # [START howto_operator_gcp_bigtable_table_wait_for_replication]
    wait_for_table_replication_task = BigtableTableReplicationCompletedSensor(
        project_id=GCP_PROJECT_ID,
        instance_id=CBT_INSTANCE_ID,
        table_id=CBT_TABLE_ID,
        poke_interval=int(CBT_POKE_INTERVAL),
        timeout=180,
        task_id='wait_for_table_replication_task',
    )
    wait_for_table_replication_task2 = BigtableTableReplicationCompletedSensor(
        instance_id=CBT_INSTANCE_ID,
        table_id=CBT_TABLE_ID,
        poke_interval=int(CBT_POKE_INTERVAL),
        timeout=180,
        task_id='wait_for_table_replication_task2',
    )
    # [END howto_operator_gcp_bigtable_table_wait_for_replication]

    # [START howto_operator_gcp_bigtable_table_delete]
    delete_table_task = BigtableDeleteTableOperator(
        project_id=GCP_PROJECT_ID,
        instance_id=CBT_INSTANCE_ID,
        table_id=CBT_TABLE_ID,
        task_id='delete_table_task',
    )
    delete_table_task2 = BigtableDeleteTableOperator(
        instance_id=CBT_INSTANCE_ID,
        table_id=CBT_TABLE_ID,
        task_id='delete_table_task2',
    )
    # [END howto_operator_gcp_bigtable_table_delete]

    wait_for_table_replication_task >> delete_table_task
    wait_for_table_replication_task2 >> delete_table_task
    wait_for_table_replication_task >> delete_table_task2
    wait_for_table_replication_task2 >> delete_table_task2
    create_instance_task >> create_table_task >> cluster_update_task
    cluster_update_task >> update_instance_task >> delete_table_task
    create_instance_task2 >> create_table_task2 >> cluster_update_task2 >> delete_table_task2

    # Only delete instances after all tables are deleted
    [delete_table_task, delete_table_task2] >> delete_instance_task >> delete_instance_task2

相关信息

airflow 源码目录

相关文章

airflow init 源码

airflow example_automl_nl_text_classification 源码

airflow example_automl_nl_text_sentiment 源码

airflow example_automl_tables 源码

airflow example_automl_translation 源码

airflow example_automl_video_intelligence_classification 源码

airflow example_automl_video_intelligence_tracking 源码

airflow example_automl_vision_object_detection 源码

airflow example_bigquery_dts 源码

airflow example_cloud_composer 源码

0  赞