spark StatCounter 源码

  • 2022-10-20
  • 浏览 (307)

spark StatCounter 代码

文件路径:/core/src/main/scala/org/apache/spark/util/StatCounter.scala

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.spark.util

import org.apache.spark.annotation.Since

/**
 * A class for tracking the statistics of a set of numbers (count, mean and variance) in a
 * numerically robust way. Includes support for merging two StatCounters. Based on Welford
 * and Chan's <a href="http://en.wikipedia.org/wiki/Algorithms_for_calculating_variance">
 * algorithms</a> for running variance.
 *
 * @constructor Initialize the StatCounter with the given values.
 */
class StatCounter(values: TraversableOnce[Double]) extends Serializable {
  private var n: Long = 0     // Running count of our values
  private var mu: Double = 0  // Running mean of our values
  private var m2: Double = 0  // Running variance numerator (sum of (x - mean)^2)
  private var maxValue: Double = Double.NegativeInfinity // Running max of our values
  private var minValue: Double = Double.PositiveInfinity // Running min of our values

  merge(values)

  /** Initialize the StatCounter with no values. */
  def this() = this(Nil)

  /** Add a value into this StatCounter, updating the internal statistics. */
  def merge(value: Double): StatCounter = {
    val delta = value - mu
    n += 1
    mu += delta / n
    m2 += delta * (value - mu)
    maxValue = math.max(maxValue, value)
    minValue = math.min(minValue, value)
    this
  }

  /** Add multiple values into this StatCounter, updating the internal statistics. */
  def merge(values: TraversableOnce[Double]): StatCounter = {
    values.foreach(v => merge(v))
    this
  }

  /** Merge another StatCounter into this one, adding up the internal statistics. */
  def merge(other: StatCounter): StatCounter = {
    if (other == this) {
      merge(other.copy())  // Avoid overwriting fields in a weird order
    } else {
      if (n == 0) {
        mu = other.mu
        m2 = other.m2
        n = other.n
        maxValue = other.maxValue
        minValue = other.minValue
      } else if (other.n != 0) {
        val delta = other.mu - mu
        if (other.n * 10 < n) {
          mu = mu + (delta * other.n) / (n + other.n)
        } else if (n * 10 < other.n) {
          mu = other.mu - (delta * n) / (n + other.n)
        } else {
          mu = (mu * n + other.mu * other.n) / (n + other.n)
        }
        m2 += other.m2 + (delta * delta * n * other.n) / (n + other.n)
        n += other.n
        maxValue = math.max(maxValue, other.maxValue)
        minValue = math.min(minValue, other.minValue)
      }
      this
    }
  }

  /** Clone this StatCounter */
  def copy(): StatCounter = {
    val other = new StatCounter
    other.n = n
    other.mu = mu
    other.m2 = m2
    other.maxValue = maxValue
    other.minValue = minValue
    other
  }

  def count: Long = n

  def mean: Double = mu

  def sum: Double = n * mu

  def max: Double = maxValue

  def min: Double = minValue

  /** Return the population variance of the values. */
  def variance: Double = popVariance

  /**
   * Return the population variance of the values.
   */
  @Since("2.1.0")
  def popVariance: Double = {
    if (n == 0) {
      Double.NaN
    } else {
      m2 / n
    }
  }

  /**
   * Return the sample variance, which corrects for bias in estimating the variance by dividing
   * by N-1 instead of N.
   */
  def sampleVariance: Double = {
    if (n <= 1) {
      Double.NaN
    } else {
      m2 / (n - 1)
    }
  }

  /** Return the population standard deviation of the values. */
  def stdev: Double = popStdev

  /**
   * Return the population standard deviation of the values.
   */
  @Since("2.1.0")
  def popStdev: Double = math.sqrt(popVariance)

  /**
   * Return the sample standard deviation of the values, which corrects for bias in estimating the
   * variance by dividing by N-1 instead of N.
   */
  def sampleStdev: Double = math.sqrt(sampleVariance)

  override def toString: String = {
    "(count: %d, mean: %f, stdev: %f, max: %f, min: %f)".format(count, mean, stdev, max, min)
  }
}

object StatCounter {
  /** Build a StatCounter from a list of values. */
  def apply(values: TraversableOnce[Double]): StatCounter = new StatCounter(values)

  /** Build a StatCounter from a list of values passed as variable-length arguments. */
  def apply(values: Double*): StatCounter = new StatCounter(values)
}

相关信息

spark 源码目录

相关文章

spark AccumulatorV2 源码

spark ByteBufferInputStream 源码

spark ByteBufferOutputStream 源码

spark CausedBy 源码

spark Clock 源码

spark ClosureCleaner 源码

spark CollectionsUtils 源码

spark CommandLineUtils 源码

spark CompletionIterator 源码

spark DependencyUtils 源码

0  赞