tidb tablecodec 源码
tidb tablecodec 代码
文件路径:/tablecodec/tablecodec.go
// Copyright 2016 PingCAP, Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package tablecodec
import (
"bytes"
"encoding/binary"
"math"
"strings"
"time"
"unicode/utf8"
"github.com/pingcap/errors"
"github.com/pingcap/tidb/errno"
"github.com/pingcap/tidb/kv"
"github.com/pingcap/tidb/parser/charset"
"github.com/pingcap/tidb/parser/model"
"github.com/pingcap/tidb/parser/mysql"
"github.com/pingcap/tidb/parser/terror"
"github.com/pingcap/tidb/sessionctx/stmtctx"
"github.com/pingcap/tidb/structure"
"github.com/pingcap/tidb/types"
"github.com/pingcap/tidb/util/codec"
"github.com/pingcap/tidb/util/collate"
"github.com/pingcap/tidb/util/dbterror"
"github.com/pingcap/tidb/util/rowcodec"
"github.com/pingcap/tidb/util/stringutil"
)
var (
errInvalidKey = dbterror.ClassXEval.NewStd(errno.ErrInvalidKey)
errInvalidRecordKey = dbterror.ClassXEval.NewStd(errno.ErrInvalidRecordKey)
errInvalidIndexKey = dbterror.ClassXEval.NewStd(errno.ErrInvalidIndexKey)
)
var (
tablePrefix = []byte{'t'}
recordPrefixSep = []byte("_r")
indexPrefixSep = []byte("_i")
metaPrefix = []byte{'m'}
)
const (
idLen = 8
prefixLen = 1 + idLen /*tableID*/ + 2
// RecordRowKeyLen is public for calculating average row size.
RecordRowKeyLen = prefixLen + idLen /*handle*/
tablePrefixLength = 1
recordPrefixSepLength = 2
metaPrefixLength = 1
// MaxOldEncodeValueLen is the maximum len of the old encoding of index value.
MaxOldEncodeValueLen = 9
// CommonHandleFlag is the flag used to decode the common handle in an unique index value.
CommonHandleFlag byte = 127
// PartitionIDFlag is the flag used to decode the partition ID in global index value.
PartitionIDFlag byte = 126
// IndexVersionFlag is the flag used to decode the index's version info.
IndexVersionFlag byte = 125
// RestoreDataFlag is the flag that RestoreData begin with.
// See rowcodec.Encoder.Encode and rowcodec.row.toBytes
RestoreDataFlag byte = rowcodec.CodecVer
)
// TableSplitKeyLen is the length of key 't{table_id}' which is used for table split.
const TableSplitKeyLen = 1 + idLen
// TablePrefix returns table's prefix 't'.
func TablePrefix() []byte {
return tablePrefix
}
// MetaPrefix returns meta prefix 'm'.
func MetaPrefix() []byte {
return metaPrefix
}
// EncodeRowKey encodes the table id and record handle into a kv.Key
func EncodeRowKey(tableID int64, encodedHandle []byte) kv.Key {
buf := make([]byte, 0, prefixLen+len(encodedHandle))
buf = appendTableRecordPrefix(buf, tableID)
buf = append(buf, encodedHandle...)
return buf
}
// EncodeRowKeyWithHandle encodes the table id, row handle into a kv.Key
func EncodeRowKeyWithHandle(tableID int64, handle kv.Handle) kv.Key {
return EncodeRowKey(tableID, handle.Encoded())
}
// CutRowKeyPrefix cuts the row key prefix.
func CutRowKeyPrefix(key kv.Key) []byte {
return key[prefixLen:]
}
// EncodeRecordKey encodes the recordPrefix, row handle into a kv.Key.
func EncodeRecordKey(recordPrefix kv.Key, h kv.Handle) kv.Key {
buf := make([]byte, 0, len(recordPrefix)+h.Len())
buf = append(buf, recordPrefix...)
buf = append(buf, h.Encoded()...)
return buf
}
func hasTablePrefix(key kv.Key) bool {
return key[0] == tablePrefix[0]
}
func hasRecordPrefixSep(key kv.Key) bool {
return key[0] == recordPrefixSep[0] && key[1] == recordPrefixSep[1]
}
// DecodeRecordKey decodes the key and gets the tableID, handle.
func DecodeRecordKey(key kv.Key) (tableID int64, handle kv.Handle, err error) {
if len(key) <= prefixLen {
return 0, nil, errInvalidRecordKey.GenWithStack("invalid record key - %q", key)
}
k := key
if !hasTablePrefix(key) {
return 0, nil, errInvalidRecordKey.GenWithStack("invalid record key - %q", k)
}
key = key[tablePrefixLength:]
key, tableID, err = codec.DecodeInt(key)
if err != nil {
return 0, nil, errors.Trace(err)
}
if !hasRecordPrefixSep(key) {
return 0, nil, errInvalidRecordKey.GenWithStack("invalid record key - %q", k)
}
key = key[recordPrefixSepLength:]
if len(key) == 8 {
var intHandle int64
key, intHandle, err = codec.DecodeInt(key)
if err != nil {
return 0, nil, errors.Trace(err)
}
return tableID, kv.IntHandle(intHandle), nil
}
h, err := kv.NewCommonHandle(key)
if err != nil {
return 0, nil, errInvalidRecordKey.GenWithStack("invalid record key - %q %v", k, err)
}
return tableID, h, nil
}
// DecodeIndexKey decodes the key and gets the tableID, indexID, indexValues.
func DecodeIndexKey(key kv.Key) (tableID int64, indexID int64, indexValues []string, err error) {
k := key
tableID, indexID, isRecord, err := DecodeKeyHead(key)
if err != nil {
return 0, 0, nil, errors.Trace(err)
}
if isRecord {
err = errInvalidIndexKey.GenWithStack("invalid index key - %q", k)
return 0, 0, nil, err
}
indexKey := key[prefixLen+idLen:]
indexValues, err = DecodeValuesBytesToStrings(indexKey)
if err != nil {
err = errInvalidIndexKey.GenWithStack("invalid index key - %q %v", k, err)
return 0, 0, nil, err
}
return tableID, indexID, indexValues, nil
}
// DecodeValuesBytesToStrings decode the raw bytes to strings for each columns.
// FIXME: Without the schema information, we can only decode the raw kind of
// the column. For instance, MysqlTime is internally saved as uint64.
func DecodeValuesBytesToStrings(b []byte) ([]string, error) {
var datumValues []string
for len(b) > 0 {
remain, d, e := codec.DecodeOne(b)
if e != nil {
return nil, e
}
str, e1 := d.ToString()
if e1 != nil {
return nil, e
}
datumValues = append(datumValues, str)
b = remain
}
return datumValues, nil
}
// EncodeMetaKey encodes the key and field into meta key.
func EncodeMetaKey(key []byte, field []byte) kv.Key {
ek := make([]byte, 0, len(metaPrefix)+codec.EncodedBytesLength(len(key))+8+codec.EncodedBytesLength(len(field)))
ek = append(ek, metaPrefix...)
ek = codec.EncodeBytes(ek, key)
ek = codec.EncodeUint(ek, uint64(structure.HashData))
ek = codec.EncodeBytes(ek, field)
return ek
}
// DecodeMetaKey decodes the key and get the meta key and meta field.
func DecodeMetaKey(ek kv.Key) (key []byte, field []byte, err error) {
var tp uint64
if !bytes.HasPrefix(ek, metaPrefix) {
return nil, nil, errors.New("invalid encoded hash data key prefix")
}
ek = ek[metaPrefixLength:]
ek, key, err = codec.DecodeBytes(ek, nil)
if err != nil {
return nil, nil, errors.Trace(err)
}
ek, tp, err = codec.DecodeUint(ek)
if err != nil {
return nil, nil, errors.Trace(err)
} else if structure.TypeFlag(tp) != structure.HashData {
return nil, nil, errors.Errorf("invalid encoded hash data key flag %c", byte(tp))
}
_, field, err = codec.DecodeBytes(ek, nil)
return key, field, errors.Trace(err)
}
// DecodeKeyHead decodes the key's head and gets the tableID, indexID. isRecordKey is true when is a record key.
func DecodeKeyHead(key kv.Key) (tableID int64, indexID int64, isRecordKey bool, err error) {
isRecordKey = false
k := key
if !key.HasPrefix(tablePrefix) {
err = errInvalidKey.GenWithStack("invalid key - %q", k)
return
}
key = key[len(tablePrefix):]
key, tableID, err = codec.DecodeInt(key)
if err != nil {
err = errors.Trace(err)
return
}
if key.HasPrefix(recordPrefixSep) {
isRecordKey = true
return
}
if !key.HasPrefix(indexPrefixSep) {
err = errInvalidKey.GenWithStack("invalid key - %q", k)
return
}
key = key[len(indexPrefixSep):]
key, indexID, err = codec.DecodeInt(key)
if err != nil {
err = errors.Trace(err)
return
}
return
}
// DecodeTableID decodes the table ID of the key, if the key is not table key, returns 0.
func DecodeTableID(key kv.Key) int64 {
if !key.HasPrefix(tablePrefix) {
return 0
}
key = key[len(tablePrefix):]
_, tableID, err := codec.DecodeInt(key)
// TODO: return error.
terror.Log(errors.Trace(err))
return tableID
}
// DecodeRowKey decodes the key and gets the handle.
func DecodeRowKey(key kv.Key) (kv.Handle, error) {
if len(key) < RecordRowKeyLen || !hasTablePrefix(key) || !hasRecordPrefixSep(key[prefixLen-2:]) {
return kv.IntHandle(0), errInvalidKey.GenWithStack("invalid key - %q", key)
}
if len(key) == RecordRowKeyLen {
u := binary.BigEndian.Uint64(key[prefixLen:])
return kv.IntHandle(codec.DecodeCmpUintToInt(u)), nil
}
return kv.NewCommonHandle(key[prefixLen:])
}
// EncodeValue encodes a go value to bytes.
func EncodeValue(sc *stmtctx.StatementContext, b []byte, raw types.Datum) ([]byte, error) {
var v types.Datum
err := flatten(sc, raw, &v)
if err != nil {
return nil, err
}
return codec.EncodeValue(sc, b, v)
}
// EncodeRow encode row data and column ids into a slice of byte.
// valBuf and values pass by caller, for reducing EncodeRow allocates temporary bufs. If you pass valBuf and values as nil,
// EncodeRow will allocate it.
func EncodeRow(sc *stmtctx.StatementContext, row []types.Datum, colIDs []int64, valBuf []byte, values []types.Datum, e *rowcodec.Encoder) ([]byte, error) {
if len(row) != len(colIDs) {
return nil, errors.Errorf("EncodeRow error: data and columnID count not match %d vs %d", len(row), len(colIDs))
}
if e.Enable {
return e.Encode(sc, colIDs, row, valBuf)
}
return EncodeOldRow(sc, row, colIDs, valBuf, values)
}
// EncodeOldRow encode row data and column ids into a slice of byte.
// Row layout: colID1, value1, colID2, value2, .....
// valBuf and values pass by caller, for reducing EncodeOldRow allocates temporary bufs. If you pass valBuf and values as nil,
// EncodeOldRow will allocate it.
func EncodeOldRow(sc *stmtctx.StatementContext, row []types.Datum, colIDs []int64, valBuf []byte, values []types.Datum) ([]byte, error) {
if len(row) != len(colIDs) {
return nil, errors.Errorf("EncodeRow error: data and columnID count not match %d vs %d", len(row), len(colIDs))
}
valBuf = valBuf[:0]
if values == nil {
values = make([]types.Datum, len(row)*2)
}
for i, c := range row {
id := colIDs[i]
values[2*i].SetInt64(id)
err := flatten(sc, c, &values[2*i+1])
if err != nil {
return valBuf, errors.Trace(err)
}
}
if len(values) == 0 {
// We could not set nil value into kv.
return append(valBuf, codec.NilFlag), nil
}
return codec.EncodeValue(sc, valBuf, values...)
}
func flatten(sc *stmtctx.StatementContext, data types.Datum, ret *types.Datum) error {
switch data.Kind() {
case types.KindMysqlTime:
// for mysql datetime, timestamp and date type
t := data.GetMysqlTime()
if t.Type() == mysql.TypeTimestamp && sc.TimeZone != time.UTC {
err := t.ConvertTimeZone(sc.TimeZone, time.UTC)
if err != nil {
return errors.Trace(err)
}
}
v, err := t.ToPackedUint()
ret.SetUint64(v)
return errors.Trace(err)
case types.KindMysqlDuration:
// for mysql time type
ret.SetInt64(int64(data.GetMysqlDuration().Duration))
return nil
case types.KindMysqlEnum:
ret.SetUint64(data.GetMysqlEnum().Value)
return nil
case types.KindMysqlSet:
ret.SetUint64(data.GetMysqlSet().Value)
return nil
case types.KindBinaryLiteral, types.KindMysqlBit:
// We don't need to handle errors here since the literal is ensured to be able to store in uint64 in convertToMysqlBit.
val, err := data.GetBinaryLiteral().ToInt(sc)
if err != nil {
return errors.Trace(err)
}
ret.SetUint64(val)
return nil
default:
*ret = data
return nil
}
}
// DecodeColumnValue decodes data to a Datum according to the column info.
func DecodeColumnValue(data []byte, ft *types.FieldType, loc *time.Location) (types.Datum, error) {
_, d, err := codec.DecodeOne(data)
if err != nil {
return types.Datum{}, errors.Trace(err)
}
colDatum, err := Unflatten(d, ft, loc)
if err != nil {
return types.Datum{}, errors.Trace(err)
}
return colDatum, nil
}
// DecodeColumnValueWithDatum decodes data to an existing Datum according to the column info.
func DecodeColumnValueWithDatum(data []byte, ft *types.FieldType, loc *time.Location, result *types.Datum) error {
var err error
_, *result, err = codec.DecodeOne(data)
if err != nil {
return errors.Trace(err)
}
*result, err = Unflatten(*result, ft, loc)
if err != nil {
return errors.Trace(err)
}
return nil
}
// DecodeRowWithMapNew decode a row to datum map.
func DecodeRowWithMapNew(b []byte, cols map[int64]*types.FieldType,
loc *time.Location, row map[int64]types.Datum) (map[int64]types.Datum, error) {
if row == nil {
row = make(map[int64]types.Datum, len(cols))
}
if b == nil {
return row, nil
}
if len(b) == 1 && b[0] == codec.NilFlag {
return row, nil
}
reqCols := make([]rowcodec.ColInfo, len(cols))
var idx int
for id, tp := range cols {
reqCols[idx] = rowcodec.ColInfo{
ID: id,
Ft: tp,
}
idx++
}
rd := rowcodec.NewDatumMapDecoder(reqCols, loc)
return rd.DecodeToDatumMap(b, row)
}
// DecodeRowWithMap decodes a byte slice into datums with an existing row map.
// Row layout: colID1, value1, colID2, value2, .....
func DecodeRowWithMap(b []byte, cols map[int64]*types.FieldType, loc *time.Location, row map[int64]types.Datum) (map[int64]types.Datum, error) {
if row == nil {
row = make(map[int64]types.Datum, len(cols))
}
if b == nil {
return row, nil
}
if len(b) == 1 && b[0] == codec.NilFlag {
return row, nil
}
cnt := 0
var (
data []byte
err error
)
for len(b) > 0 {
// Get col id.
data, b, err = codec.CutOne(b)
if err != nil {
return nil, errors.Trace(err)
}
_, cid, err := codec.DecodeOne(data)
if err != nil {
return nil, errors.Trace(err)
}
// Get col value.
data, b, err = codec.CutOne(b)
if err != nil {
return nil, errors.Trace(err)
}
id := cid.GetInt64()
ft, ok := cols[id]
if ok {
_, v, err := codec.DecodeOne(data)
if err != nil {
return nil, errors.Trace(err)
}
v, err = Unflatten(v, ft, loc)
if err != nil {
return nil, errors.Trace(err)
}
row[id] = v
cnt++
if cnt == len(cols) {
// Get enough data.
break
}
}
}
return row, nil
}
// DecodeRowToDatumMap decodes a byte slice into datums.
// Row layout: colID1, value1, colID2, value2, .....
// Default value columns, generated columns and handle columns are unprocessed.
func DecodeRowToDatumMap(b []byte, cols map[int64]*types.FieldType, loc *time.Location) (map[int64]types.Datum, error) {
if !rowcodec.IsNewFormat(b) {
return DecodeRowWithMap(b, cols, loc, nil)
}
return DecodeRowWithMapNew(b, cols, loc, nil)
}
// DecodeHandleToDatumMap decodes a handle into datum map.
func DecodeHandleToDatumMap(handle kv.Handle, handleColIDs []int64,
cols map[int64]*types.FieldType, loc *time.Location, row map[int64]types.Datum) (map[int64]types.Datum, error) {
if handle == nil || len(handleColIDs) == 0 {
return row, nil
}
if row == nil {
row = make(map[int64]types.Datum, len(cols))
}
for id, ft := range cols {
for idx, hid := range handleColIDs {
if id != hid {
continue
}
if types.NeedRestoredData(ft) {
continue
}
d, err := decodeHandleToDatum(handle, ft, idx)
if err != nil {
return row, err
}
d, err = Unflatten(d, ft, loc)
if err != nil {
return row, err
}
if _, exists := row[id]; !exists {
row[id] = d
}
break
}
}
return row, nil
}
// decodeHandleToDatum decodes a handle to a specific column datum.
func decodeHandleToDatum(handle kv.Handle, ft *types.FieldType, idx int) (types.Datum, error) {
var d types.Datum
var err error
if handle.IsInt() {
if mysql.HasUnsignedFlag(ft.GetFlag()) {
d = types.NewUintDatum(uint64(handle.IntValue()))
} else {
d = types.NewIntDatum(handle.IntValue())
}
return d, nil
}
// Decode common handle to Datum.
_, d, err = codec.DecodeOne(handle.EncodedCol(idx))
return d, err
}
// CutRowNew cuts encoded row into byte slices and return columns' byte slice.
// Row layout: colID1, value1, colID2, value2, .....
func CutRowNew(data []byte, colIDs map[int64]int) ([][]byte, error) {
if data == nil {
return nil, nil
}
if len(data) == 1 && data[0] == codec.NilFlag {
return nil, nil
}
var (
cnt int
b []byte
err error
cid int64
)
row := make([][]byte, len(colIDs))
for len(data) > 0 && cnt < len(colIDs) {
// Get col id.
data, cid, err = codec.CutColumnID(data)
if err != nil {
return nil, errors.Trace(err)
}
// Get col value.
b, data, err = codec.CutOne(data)
if err != nil {
return nil, errors.Trace(err)
}
offset, ok := colIDs[cid]
if ok {
row[offset] = b
cnt++
}
}
return row, nil
}
// UnflattenDatums converts raw datums to column datums.
func UnflattenDatums(datums []types.Datum, fts []*types.FieldType, loc *time.Location) ([]types.Datum, error) {
for i, datum := range datums {
ft := fts[i]
uDatum, err := Unflatten(datum, ft, loc)
if err != nil {
return datums, errors.Trace(err)
}
datums[i] = uDatum
}
return datums, nil
}
// Unflatten converts a raw datum to a column datum.
func Unflatten(datum types.Datum, ft *types.FieldType, loc *time.Location) (types.Datum, error) {
if datum.IsNull() {
return datum, nil
}
switch ft.GetType() {
case mysql.TypeFloat:
datum.SetFloat32(float32(datum.GetFloat64()))
return datum, nil
case mysql.TypeVarchar, mysql.TypeString, mysql.TypeVarString, mysql.TypeTinyBlob,
mysql.TypeMediumBlob, mysql.TypeBlob, mysql.TypeLongBlob:
datum.SetString(datum.GetString(), ft.GetCollate())
case mysql.TypeTiny, mysql.TypeShort, mysql.TypeYear, mysql.TypeInt24,
mysql.TypeLong, mysql.TypeLonglong, mysql.TypeDouble:
return datum, nil
case mysql.TypeDate, mysql.TypeDatetime, mysql.TypeTimestamp:
t := types.NewTime(types.ZeroCoreTime, ft.GetType(), ft.GetDecimal())
var err error
err = t.FromPackedUint(datum.GetUint64())
if err != nil {
return datum, errors.Trace(err)
}
if ft.GetType() == mysql.TypeTimestamp && !t.IsZero() {
err = t.ConvertTimeZone(time.UTC, loc)
if err != nil {
return datum, errors.Trace(err)
}
}
datum.SetUint64(0)
datum.SetMysqlTime(t)
return datum, nil
case mysql.TypeDuration: // duration should read fsp from column meta data
dur := types.Duration{Duration: time.Duration(datum.GetInt64()), Fsp: ft.GetDecimal()}
datum.SetMysqlDuration(dur)
return datum, nil
case mysql.TypeEnum:
// ignore error deliberately, to read empty enum value.
enum, err := types.ParseEnumValue(ft.GetElems(), datum.GetUint64())
if err != nil {
enum = types.Enum{}
}
datum.SetMysqlEnum(enum, ft.GetCollate())
return datum, nil
case mysql.TypeSet:
set, err := types.ParseSetValue(ft.GetElems(), datum.GetUint64())
if err != nil {
return datum, errors.Trace(err)
}
datum.SetMysqlSet(set, ft.GetCollate())
return datum, nil
case mysql.TypeBit:
val := datum.GetUint64()
byteSize := (ft.GetFlen() + 7) >> 3
datum.SetUint64(0)
datum.SetMysqlBit(types.NewBinaryLiteralFromUint(val, byteSize))
}
return datum, nil
}
// EncodeIndexSeekKey encodes an index value to kv.Key.
func EncodeIndexSeekKey(tableID int64, idxID int64, encodedValue []byte) kv.Key {
key := make([]byte, 0, RecordRowKeyLen+len(encodedValue))
key = appendTableIndexPrefix(key, tableID)
key = codec.EncodeInt(key, idxID)
key = append(key, encodedValue...)
return key
}
// CutIndexKey cuts encoded index key into colIDs to bytes slices map.
// The returned value b is the remaining bytes of the key which would be empty if it is unique index or handle data
// if it is non-unique index.
func CutIndexKey(key kv.Key, colIDs []int64) (values map[int64][]byte, b []byte, err error) {
b = key[prefixLen+idLen:]
values = make(map[int64][]byte, len(colIDs))
for _, id := range colIDs {
var val []byte
val, b, err = codec.CutOne(b)
if err != nil {
return nil, nil, errors.Trace(err)
}
values[id] = val
}
return
}
// CutIndexPrefix cuts the index prefix.
func CutIndexPrefix(key kv.Key) []byte {
return key[prefixLen+idLen:]
}
// CutIndexKeyNew cuts encoded index key into colIDs to bytes slices.
// The returned value b is the remaining bytes of the key which would be empty if it is unique index or handle data
// if it is non-unique index.
func CutIndexKeyNew(key kv.Key, length int) (values [][]byte, b []byte, err error) {
b = key[prefixLen+idLen:]
values = make([][]byte, 0, length)
for i := 0; i < length; i++ {
var val []byte
val, b, err = codec.CutOne(b)
if err != nil {
return nil, nil, errors.Trace(err)
}
values = append(values, val)
}
return
}
// CutCommonHandle cuts encoded common handle key into colIDs to bytes slices.
// The returned value b is the remaining bytes of the key which would be empty if it is unique index or handle data
// if it is non-unique index.
func CutCommonHandle(key kv.Key, length int) (values [][]byte, b []byte, err error) {
b = key[prefixLen:]
values = make([][]byte, 0, length)
for i := 0; i < length; i++ {
var val []byte
val, b, err = codec.CutOne(b)
if err != nil {
return nil, nil, errors.Trace(err)
}
values = append(values, val)
}
return
}
// HandleStatus is the handle status in index.
type HandleStatus int
const (
// HandleDefault means decode handle value as int64 or bytes when DecodeIndexKV.
HandleDefault HandleStatus = iota
// HandleIsUnsigned means decode handle value as uint64 when DecodeIndexKV.
HandleIsUnsigned
// HandleNotNeeded means no need to decode handle value when DecodeIndexKV.
HandleNotNeeded
)
// reEncodeHandle encodes the handle as a Datum so it can be properly decoded later.
// If it is common handle, it returns the encoded column values.
// If it is int handle, it is encoded as int Datum or uint Datum decided by the unsigned.
func reEncodeHandle(handle kv.Handle, unsigned bool) ([][]byte, error) {
if !handle.IsInt() {
handleColLen := handle.NumCols()
cHandleBytes := make([][]byte, 0, handleColLen)
for i := 0; i < handleColLen; i++ {
cHandleBytes = append(cHandleBytes, handle.EncodedCol(i))
}
return cHandleBytes, nil
}
handleDatum := types.NewIntDatum(handle.IntValue())
if unsigned {
handleDatum.SetUint64(handleDatum.GetUint64())
}
intHandleBytes, err := codec.EncodeValue(nil, nil, handleDatum)
return [][]byte{intHandleBytes}, err
}
// reEncodeHandleConsiderNewCollation encodes the handle as a Datum so it can be properly decoded later.
func reEncodeHandleConsiderNewCollation(handle kv.Handle, columns []rowcodec.ColInfo, restoreData []byte) ([][]byte, error) {
handleColLen := handle.NumCols()
cHandleBytes := make([][]byte, 0, handleColLen)
for i := 0; i < handleColLen; i++ {
cHandleBytes = append(cHandleBytes, handle.EncodedCol(i))
}
if len(restoreData) == 0 {
return cHandleBytes, nil
}
return decodeRestoredValuesV5(columns, cHandleBytes, restoreData)
}
func decodeRestoredValues(columns []rowcodec.ColInfo, restoredVal []byte) ([][]byte, error) {
colIDs := make(map[int64]int, len(columns))
for i, col := range columns {
colIDs[col.ID] = i
}
// We don't need to decode handle here, and colIDs >= 0 always.
rd := rowcodec.NewByteDecoder(columns, []int64{-1}, nil, nil)
resultValues, err := rd.DecodeToBytesNoHandle(colIDs, restoredVal)
if err != nil {
return nil, errors.Trace(err)
}
return resultValues, nil
}
// decodeRestoredValuesV5 decodes index values whose format is introduced in TiDB 5.0.
// Unlike the format in TiDB 4.0, the new format is optimized for storage space:
// 1. If the index is a composed index, only the non-binary string column's value need to write to value, not all.
// 2. If a string column's collation is _bin, then we only write the number of the truncated spaces to value.
// 3. If a string column is char, not varchar, then we use the sortKey directly.
func decodeRestoredValuesV5(columns []rowcodec.ColInfo, results [][]byte, restoredVal []byte) ([][]byte, error) {
colIDOffsets := buildColumnIDOffsets(columns)
colInfosNeedRestore := buildRestoredColumn(columns)
rd := rowcodec.NewByteDecoder(colInfosNeedRestore, nil, nil, nil)
newResults, err := rd.DecodeToBytesNoHandle(colIDOffsets, restoredVal)
if err != nil {
return nil, errors.Trace(err)
}
for i := range newResults {
noRestoreData := len(newResults[i]) == 0
if noRestoreData {
newResults[i] = results[i]
continue
}
if collate.IsBinCollation(columns[i].Ft.GetCollate()) {
noPaddingDatum, err := DecodeColumnValue(results[i], columns[i].Ft, nil)
if err != nil {
return nil, errors.Trace(err)
}
paddingCountDatum, err := DecodeColumnValue(newResults[i], types.NewFieldType(mysql.TypeLonglong), nil)
if err != nil {
return nil, errors.Trace(err)
}
noPaddingStr, paddingCount := noPaddingDatum.GetString(), int(paddingCountDatum.GetInt64())
// Skip if padding count is 0.
if paddingCount == 0 {
newResults[i] = results[i]
continue
}
newDatum := &noPaddingDatum
newDatum.SetString(noPaddingStr+strings.Repeat(" ", paddingCount), newDatum.Collation())
newResults[i] = newResults[i][:0]
newResults[i] = append(newResults[i], rowcodec.BytesFlag)
newResults[i] = codec.EncodeBytes(newResults[i], newDatum.GetBytes())
}
}
return newResults, nil
}
func buildColumnIDOffsets(allCols []rowcodec.ColInfo) map[int64]int {
colIDOffsets := make(map[int64]int, len(allCols))
for i, col := range allCols {
colIDOffsets[col.ID] = i
}
return colIDOffsets
}
func buildRestoredColumn(allCols []rowcodec.ColInfo) []rowcodec.ColInfo {
restoredColumns := make([]rowcodec.ColInfo, 0, len(allCols))
for i, col := range allCols {
if !types.NeedRestoredData(col.Ft) {
continue
}
copyColInfo := rowcodec.ColInfo{
ID: col.ID,
}
if collate.IsBinCollation(col.Ft.GetCollate()) {
// Change the fieldType from string to uint since we store the number of the truncated spaces.
copyColInfo.Ft = types.NewFieldType(mysql.TypeLonglong)
} else {
copyColInfo.Ft = allCols[i].Ft
}
restoredColumns = append(restoredColumns, copyColInfo)
}
return restoredColumns
}
func decodeIndexKvOldCollation(key, value []byte, colsLen int, hdStatus HandleStatus) ([][]byte, error) {
resultValues, b, err := CutIndexKeyNew(key, colsLen)
if err != nil {
return nil, errors.Trace(err)
}
if hdStatus == HandleNotNeeded {
return resultValues, nil
}
var handle kv.Handle
if len(b) > 0 {
// non-unique index
handle, err = decodeHandleInIndexKey(b)
if err != nil {
return nil, err
}
handleBytes, err := reEncodeHandle(handle, hdStatus == HandleIsUnsigned)
if err != nil {
return nil, errors.Trace(err)
}
resultValues = append(resultValues, handleBytes...)
} else {
// In unique int handle index.
handle = decodeIntHandleInIndexValue(value)
handleBytes, err := reEncodeHandle(handle, hdStatus == HandleIsUnsigned)
if err != nil {
return nil, errors.Trace(err)
}
resultValues = append(resultValues, handleBytes...)
}
return resultValues, nil
}
func getIndexVersion(value []byte) int {
if len(value) <= MaxOldEncodeValueLen {
return 0
}
tailLen := int(value[0])
if (tailLen == 0 || tailLen == 1) && value[1] == IndexVersionFlag {
return int(value[2])
}
return 0
}
// DecodeIndexKV uses to decode index key values.
//
// `colsLen` is expected to be index columns count.
// `columns` is expected to be index columns + handle columns(if hdStatus is not HandleNotNeeded).
func DecodeIndexKV(key, value []byte, colsLen int, hdStatus HandleStatus, columns []rowcodec.ColInfo) ([][]byte, error) {
if len(value) <= MaxOldEncodeValueLen {
return decodeIndexKvOldCollation(key, value, colsLen, hdStatus)
}
if getIndexVersion(value) == 1 {
return decodeIndexKvForClusteredIndexVersion1(key, value, colsLen, hdStatus, columns)
}
return decodeIndexKvGeneral(key, value, colsLen, hdStatus, columns)
}
// DecodeIndexHandle uses to decode the handle from index key/value.
func DecodeIndexHandle(key, value []byte, colsLen int) (kv.Handle, error) {
_, b, err := CutIndexKeyNew(key, colsLen)
if err != nil {
return nil, errors.Trace(err)
}
if len(b) > 0 {
return decodeHandleInIndexKey(b)
} else if len(value) >= 8 {
return decodeHandleInIndexValue(value)
}
// Should never execute to here.
return nil, errors.Errorf("no handle in index key: %v, value: %v", key, value)
}
func decodeHandleInIndexKey(keySuffix []byte) (kv.Handle, error) {
remain, d, err := codec.DecodeOne(keySuffix)
if err != nil {
return nil, errors.Trace(err)
}
if len(remain) == 0 && d.Kind() == types.KindInt64 {
return kv.IntHandle(d.GetInt64()), nil
}
return kv.NewCommonHandle(keySuffix)
}
func decodeHandleInIndexValue(value []byte) (kv.Handle, error) {
if getIndexVersion(value) == 1 {
seg := SplitIndexValueForClusteredIndexVersion1(value)
return kv.NewCommonHandle(seg.CommonHandle)
}
if len(value) > MaxOldEncodeValueLen {
tailLen := value[0]
if tailLen >= 8 {
return decodeIntHandleInIndexValue(value[len(value)-int(tailLen):]), nil
}
handleLen := uint16(value[2])<<8 + uint16(value[3])
return kv.NewCommonHandle(value[4 : 4+handleLen])
}
return decodeIntHandleInIndexValue(value), nil
}
// decodeIntHandleInIndexValue uses to decode index value as int handle id.
func decodeIntHandleInIndexValue(data []byte) kv.Handle {
return kv.IntHandle(binary.BigEndian.Uint64(data))
}
// EncodeTableIndexPrefix encodes index prefix with tableID and idxID.
func EncodeTableIndexPrefix(tableID, idxID int64) kv.Key {
key := make([]byte, 0, prefixLen)
key = appendTableIndexPrefix(key, tableID)
key = codec.EncodeInt(key, idxID)
return key
}
// EncodeTablePrefix encodes the table prefix to generate a key
func EncodeTablePrefix(tableID int64) kv.Key {
key := make([]byte, 0, tablePrefixLength+idLen)
key = append(key, tablePrefix...)
key = codec.EncodeInt(key, tableID)
return key
}
// EncodeTablePrefixSeekKey encodes the table prefix and encodecValue into a kv.Key.
// It used for seek justly.
func EncodeTablePrefixSeekKey(tableID int64, encodecValue []byte) kv.Key {
key := make([]byte, 0, tablePrefixLength+idLen+len(encodecValue))
key = appendTablePrefix(key, tableID)
key = append(key, encodecValue...)
return key
}
// appendTablePrefix appends table prefix "t[tableID]" into buf.
func appendTablePrefix(buf []byte, tableID int64) []byte {
buf = append(buf, tablePrefix...)
buf = codec.EncodeInt(buf, tableID)
return buf
}
// appendTableRecordPrefix appends table record prefix "t[tableID]_r".
func appendTableRecordPrefix(buf []byte, tableID int64) []byte {
buf = append(buf, tablePrefix...)
buf = codec.EncodeInt(buf, tableID)
buf = append(buf, recordPrefixSep...)
return buf
}
// appendTableIndexPrefix appends table index prefix "t[tableID]_i".
func appendTableIndexPrefix(buf []byte, tableID int64) []byte {
buf = append(buf, tablePrefix...)
buf = codec.EncodeInt(buf, tableID)
buf = append(buf, indexPrefixSep...)
return buf
}
// GenTableRecordPrefix composes record prefix with tableID: "t[tableID]_r".
func GenTableRecordPrefix(tableID int64) kv.Key {
buf := make([]byte, 0, len(tablePrefix)+8+len(recordPrefixSep))
return appendTableRecordPrefix(buf, tableID)
}
// GenTableIndexPrefix composes index prefix with tableID: "t[tableID]_i".
func GenTableIndexPrefix(tableID int64) kv.Key {
buf := make([]byte, 0, len(tablePrefix)+8+len(indexPrefixSep))
return appendTableIndexPrefix(buf, tableID)
}
// IsRecordKey is used to check whether the key is an record key.
func IsRecordKey(k []byte) bool {
return len(k) > 11 && k[0] == 't' && k[10] == 'r'
}
// IsIndexKey is used to check whether the key is an index key.
func IsIndexKey(k []byte) bool {
return len(k) > 11 && k[0] == 't' && k[10] == 'i'
}
// IsTableKey is used to check whether the key is a table key.
func IsTableKey(k []byte) bool {
return len(k) == 9 && k[0] == 't'
}
// IsUntouchedIndexKValue uses to check whether the key is index key, and the value is untouched,
// since the untouched index key/value is no need to commit.
func IsUntouchedIndexKValue(k, v []byte) bool {
if !IsIndexKey(k) {
return false
}
vLen := len(v)
if vLen <= MaxOldEncodeValueLen {
return (vLen == 1 || vLen == 9) && v[vLen-1] == kv.UnCommitIndexKVFlag
}
// New index value format
tailLen := int(v[0])
if tailLen < 8 {
// Non-unique index.
return tailLen >= 1 && v[vLen-1] == kv.UnCommitIndexKVFlag
}
// Unique index
return tailLen == 9
}
// GenTablePrefix composes table record and index prefix: "t[tableID]".
func GenTablePrefix(tableID int64) kv.Key {
buf := make([]byte, 0, len(tablePrefix)+8)
buf = append(buf, tablePrefix...)
buf = codec.EncodeInt(buf, tableID)
return buf
}
// TruncateToRowKeyLen truncates the key to row key length if the key is longer than row key.
func TruncateToRowKeyLen(key kv.Key) kv.Key {
if len(key) > RecordRowKeyLen {
return key[:RecordRowKeyLen]
}
return key
}
// GetTableHandleKeyRange returns table handle's key range with tableID.
func GetTableHandleKeyRange(tableID int64) (startKey, endKey []byte) {
startKey = EncodeRowKeyWithHandle(tableID, kv.IntHandle(math.MinInt64))
endKey = EncodeRowKeyWithHandle(tableID, kv.IntHandle(math.MaxInt64))
return
}
// GetTableIndexKeyRange returns table index's key range with tableID and indexID.
func GetTableIndexKeyRange(tableID, indexID int64) (startKey, endKey []byte) {
startKey = EncodeIndexSeekKey(tableID, indexID, nil)
endKey = EncodeIndexSeekKey(tableID, indexID, []byte{255})
return
}
// GetIndexKeyBuf reuse or allocate buffer
func GetIndexKeyBuf(buf []byte, defaultCap int) []byte {
if buf != nil {
return buf[:0]
}
return make([]byte, 0, defaultCap)
}
// GenIndexKey generates index key using input physical table id
func GenIndexKey(sc *stmtctx.StatementContext, tblInfo *model.TableInfo, idxInfo *model.IndexInfo,
phyTblID int64, indexedValues []types.Datum, h kv.Handle, buf []byte) (key []byte, distinct bool, err error) {
if idxInfo.Unique {
// See https://dev.mysql.com/doc/refman/5.7/en/create-index.html
// A UNIQUE index creates a constraint such that all values in the index must be distinct.
// An error occurs if you try to add a new row with a key value that matches an existing row.
// For all engines, a UNIQUE index permits multiple NULL values for columns that can contain NULL.
distinct = true
for _, cv := range indexedValues {
if cv.IsNull() {
distinct = false
break
}
}
}
// For string columns, indexes can be created using only the leading part of column values,
// using col_name(length) syntax to specify an index prefix length.
TruncateIndexValues(tblInfo, idxInfo, indexedValues)
key = GetIndexKeyBuf(buf, RecordRowKeyLen+len(indexedValues)*9+9)
key = appendTableIndexPrefix(key, phyTblID)
key = codec.EncodeInt(key, idxInfo.ID)
key, err = codec.EncodeKey(sc, key, indexedValues...)
if err != nil {
return nil, false, err
}
if !distinct && h != nil {
if h.IsInt() {
key, err = codec.EncodeKey(sc, key, types.NewDatum(h.IntValue()))
} else {
key = append(key, h.Encoded()...)
}
}
return
}
// TempIndexPrefix used to generate temporary index ID from index ID.
const TempIndexPrefix = 0x7fff000000000000
// IndexIDMask used to get index id from index ID/temp index ID.
const IndexIDMask = 0xffffffffffff
// IndexKey2TempIndexKey generates a temporary index key.
func IndexKey2TempIndexKey(indexID int64, key []byte) {
eid := codec.EncodeIntToCmpUint(TempIndexPrefix | indexID)
binary.BigEndian.PutUint64(key[prefixLen:], eid)
}
// TempIndexKey2IndexKey generates an index key from temporary index key.
func TempIndexKey2IndexKey(originIdxID int64, tempIdxKey []byte) {
eid := codec.EncodeIntToCmpUint(originIdxID)
binary.BigEndian.PutUint64(tempIdxKey[prefixLen:], eid)
}
// GenIndexValuePortal is the portal for generating index value.
// Value layout:
//
// +-- IndexValueVersion0 (with restore data, or common handle, or index is global)
// |
// | Layout: TailLen | Options | Padding | [IntHandle] | [UntouchedFlag]
// | Length: 1 | len(options) | len(padding) | 8 | 1
// |
// | TailLen: len(padding) + len(IntHandle) + len(UntouchedFlag)
// | Options: Encode some value for new features, such as common handle, new collations or global index.
// | See below for more information.
// | Padding: Ensure length of value always >= 10. (or >= 11 if UntouchedFlag exists.)
// | IntHandle: Only exists when table use int handles and index is unique.
// | UntouchedFlag: Only exists when index is untouched.
// |
// +-- Old Encoding (without restore data, integer handle, local)
// |
// | Layout: [Handle] | [UntouchedFlag]
// | Length: 8 | 1
// |
// | Handle: Only exists in unique index.
// | UntouchedFlag: Only exists when index is untouched.
// |
// | If neither Handle nor UntouchedFlag exists, value will be one single byte '0' (i.e. []byte{'0'}).
// | Length of value <= 9, use to distinguish from the new encoding.
// |
// +-- IndexValueForClusteredIndexVersion1
// |
// | Layout: TailLen | VersionFlag | Version | Options | [UntouchedFlag]
// | Length: 1 | 1 | 1 | len(options) | 1
// |
// | TailLen: len(UntouchedFlag)
// | Options: Encode some value for new features, such as common handle, new collations or global index.
// | See below for more information.
// | UntouchedFlag: Only exists when index is untouched.
// |
// | Layout of Options:
// |
// | Segment: Common Handle | Global Index | New Collation
// | Layout: CHandle flag | CHandle Len | CHandle | PidFlag | PartitionID | restoreData
// | Length: 1 | 2 | len(CHandle) | 1 | 8 | len(restoreData)
// |
// | Common Handle Segment: Exists when unique index used common handles.
// | Global Index Segment: Exists when index is global.
// | New Collation Segment: Exists when new collation is used and index or handle contains non-binary string.
// | In v4.0, restored data contains all the index values. For example, (a int, b char(10)) and index (a, b).
// | The restored data contains both the values of a and b.
// | In v5.0, restored data contains only non-binary data(except for char and _bin). In the above example, the restored data contains only the value of b.
// | Besides, if the collation of b is _bin, then restored data is an integer indicate the spaces are truncated. Then we use sortKey
// | and the restored data together to restore original data.
func GenIndexValuePortal(sc *stmtctx.StatementContext, tblInfo *model.TableInfo, idxInfo *model.IndexInfo, needRestoredData bool, distinct bool, untouched bool, indexedValues []types.Datum, h kv.Handle, partitionID int64, restoredData []types.Datum) ([]byte, error) {
if tblInfo.IsCommonHandle && tblInfo.CommonHandleVersion == 1 {
return GenIndexValueForClusteredIndexVersion1(sc, tblInfo, idxInfo, needRestoredData, distinct, untouched, indexedValues, h, partitionID, restoredData)
}
return genIndexValueVersion0(sc, tblInfo, idxInfo, needRestoredData, distinct, untouched, indexedValues, h, partitionID)
}
// TryGetCommonPkColumnRestoredIds get the IDs of primary key columns which need restored data if the table has common handle.
// Caller need to make sure the table has common handle.
func TryGetCommonPkColumnRestoredIds(tbl *model.TableInfo) []int64 {
var pkColIds []int64
var pkIdx *model.IndexInfo
for _, idx := range tbl.Indices {
if idx.Primary {
pkIdx = idx
break
}
}
if pkIdx == nil {
return pkColIds
}
for _, idxCol := range pkIdx.Columns {
if types.NeedRestoredData(&tbl.Columns[idxCol.Offset].FieldType) {
pkColIds = append(pkColIds, tbl.Columns[idxCol.Offset].ID)
}
}
return pkColIds
}
// GenIndexValueForClusteredIndexVersion1 generates the index value for the clustered index with version 1(New in v5.0.0).
func GenIndexValueForClusteredIndexVersion1(sc *stmtctx.StatementContext, tblInfo *model.TableInfo, idxInfo *model.IndexInfo, idxValNeedRestoredData bool, distinct bool, untouched bool, indexedValues []types.Datum, h kv.Handle, partitionID int64, handleRestoredData []types.Datum) ([]byte, error) {
idxVal := make([]byte, 0)
idxVal = append(idxVal, 0)
tailLen := 0
// Version info.
idxVal = append(idxVal, IndexVersionFlag)
idxVal = append(idxVal, byte(1))
if distinct {
idxVal = encodeCommonHandle(idxVal, h)
}
if idxInfo.Global {
idxVal = encodePartitionID(idxVal, partitionID)
}
if idxValNeedRestoredData || len(handleRestoredData) > 0 {
colIds := make([]int64, 0, len(idxInfo.Columns))
allRestoredData := make([]types.Datum, 0, len(handleRestoredData)+len(idxInfo.Columns))
for i, idxCol := range idxInfo.Columns {
col := tblInfo.Columns[idxCol.Offset]
// If the column is the primary key's column,
// the restored data will be written later. Skip writing it here to avoid redundancy.
if mysql.HasPriKeyFlag(col.GetFlag()) {
continue
}
if types.NeedRestoredData(&col.FieldType) {
colIds = append(colIds, col.ID)
if collate.IsBinCollation(col.GetCollate()) {
allRestoredData = append(allRestoredData, types.NewUintDatum(uint64(stringutil.GetTailSpaceCount(indexedValues[i].GetString()))))
} else {
allRestoredData = append(allRestoredData, indexedValues[i])
}
}
}
if len(handleRestoredData) > 0 {
pkColIds := TryGetCommonPkColumnRestoredIds(tblInfo)
colIds = append(colIds, pkColIds...)
allRestoredData = append(allRestoredData, handleRestoredData...)
}
rd := rowcodec.Encoder{Enable: true}
rowRestoredValue, err := rd.Encode(sc, colIds, allRestoredData, nil)
if err != nil {
return nil, err
}
idxVal = append(idxVal, rowRestoredValue...)
}
if untouched {
tailLen = 1
idxVal = append(idxVal, kv.UnCommitIndexKVFlag)
}
idxVal[0] = byte(tailLen)
return idxVal, nil
}
// genIndexValueVersion0 create index value for both local and global index.
func genIndexValueVersion0(sc *stmtctx.StatementContext, tblInfo *model.TableInfo, idxInfo *model.IndexInfo, idxValNeedRestoredData bool, distinct bool, untouched bool, indexedValues []types.Datum, h kv.Handle, partitionID int64) ([]byte, error) {
idxVal := make([]byte, 0)
idxVal = append(idxVal, 0)
newEncode := false
tailLen := 0
if !h.IsInt() && distinct {
idxVal = encodeCommonHandle(idxVal, h)
newEncode = true
}
if idxInfo.Global {
idxVal = encodePartitionID(idxVal, partitionID)
newEncode = true
}
if idxValNeedRestoredData {
colIds := make([]int64, len(idxInfo.Columns))
for i, col := range idxInfo.Columns {
colIds[i] = tblInfo.Columns[col.Offset].ID
}
rd := rowcodec.Encoder{Enable: true}
rowRestoredValue, err := rd.Encode(sc, colIds, indexedValues, nil)
if err != nil {
return nil, err
}
idxVal = append(idxVal, rowRestoredValue...)
newEncode = true
}
if newEncode {
if h.IsInt() && distinct {
// The len of the idxVal is always >= 10 since len (restoredValue) > 0.
tailLen += 8
idxVal = append(idxVal, EncodeHandleInUniqueIndexValue(h, false)...)
} else if len(idxVal) < 10 {
// Padding the len to 10
paddingLen := 10 - len(idxVal)
tailLen += paddingLen
idxVal = append(idxVal, bytes.Repeat([]byte{0x0}, paddingLen)...)
}
if untouched {
// If index is untouched and fetch here means the key is exists in TiKV, but not in txn mem-buffer,
// then should also write the untouched index key/value to mem-buffer to make sure the data
// is consistent with the index in txn mem-buffer.
tailLen++
idxVal = append(idxVal, kv.UnCommitIndexKVFlag)
}
idxVal[0] = byte(tailLen)
} else {
// Old index value encoding.
idxVal = make([]byte, 0)
if distinct {
idxVal = EncodeHandleInUniqueIndexValue(h, untouched)
}
if untouched {
// If index is untouched and fetch here means the key is exists in TiKV, but not in txn mem-buffer,
// then should also write the untouched index key/value to mem-buffer to make sure the data
// is consistent with the index in txn mem-buffer.
idxVal = append(idxVal, kv.UnCommitIndexKVFlag)
}
if len(idxVal) == 0 {
idxVal = []byte{'0'}
}
}
return idxVal, nil
}
// TruncateIndexValues truncates the index values created using only the leading part of column values.
func TruncateIndexValues(tblInfo *model.TableInfo, idxInfo *model.IndexInfo, indexedValues []types.Datum) {
for i := 0; i < len(indexedValues); i++ {
idxCol := idxInfo.Columns[i]
tblCol := tblInfo.Columns[idxCol.Offset]
TruncateIndexValue(&indexedValues[i], idxCol, tblCol)
}
}
// TruncateIndexValue truncate one value in the index.
func TruncateIndexValue(v *types.Datum, idxCol *model.IndexColumn, tblCol *model.ColumnInfo) {
noPrefixIndex := idxCol.Length == types.UnspecifiedLength
if noPrefixIndex {
return
}
notStringType := v.Kind() != types.KindString && v.Kind() != types.KindBytes
if notStringType {
return
}
colValue := v.GetBytes()
if tblCol.GetCharset() == charset.CharsetBin || tblCol.GetCharset() == charset.CharsetASCII {
// Count character length by bytes if charset is binary or ascii.
if len(colValue) > idxCol.Length {
// truncate value and limit its length
if v.Kind() == types.KindBytes {
v.SetBytes(colValue[:idxCol.Length])
} else {
v.SetString(v.GetString()[:idxCol.Length], tblCol.GetCollate())
}
}
} else if utf8.RuneCount(colValue) > idxCol.Length {
// Count character length by characters for other rune-based charsets, they are all internally encoded as UTF-8.
rs := bytes.Runes(colValue)
truncateStr := string(rs[:idxCol.Length])
// truncate value and limit its length
v.SetString(truncateStr, tblCol.GetCollate())
}
}
// EncodeHandleInUniqueIndexValue encodes handle in data.
func EncodeHandleInUniqueIndexValue(h kv.Handle, isUntouched bool) []byte {
if h.IsInt() {
var data [8]byte
binary.BigEndian.PutUint64(data[:], uint64(h.IntValue()))
return data[:]
}
var untouchedFlag byte
if isUntouched {
untouchedFlag = 1
}
return encodeCommonHandle([]byte{untouchedFlag}, h)
}
func encodeCommonHandle(idxVal []byte, h kv.Handle) []byte {
idxVal = append(idxVal, CommonHandleFlag)
hLen := uint16(len(h.Encoded()))
idxVal = append(idxVal, byte(hLen>>8), byte(hLen))
idxVal = append(idxVal, h.Encoded()...)
return idxVal
}
// DecodeHandleInUniqueIndexValue decodes handle in data.
func DecodeHandleInUniqueIndexValue(data []byte, isCommonHandle bool) (kv.Handle, error) {
if !isCommonHandle {
dLen := len(data)
if dLen <= MaxOldEncodeValueLen {
return kv.IntHandle(int64(binary.BigEndian.Uint64(data))), nil
}
return kv.IntHandle(int64(binary.BigEndian.Uint64(data[dLen-int(data[0]):]))), nil
}
if getIndexVersion(data) == 1 {
seg := SplitIndexValueForClusteredIndexVersion1(data)
h, err := kv.NewCommonHandle(seg.CommonHandle)
if err != nil {
return nil, err
}
return h, nil
}
tailLen := int(data[0])
data = data[:len(data)-tailLen]
handleLen := uint16(data[2])<<8 + uint16(data[3])
handleEndOff := 4 + handleLen
h, err := kv.NewCommonHandle(data[4:handleEndOff])
if err != nil {
return nil, err
}
return h, nil
}
func encodePartitionID(idxVal []byte, partitionID int64) []byte {
idxVal = append(idxVal, PartitionIDFlag)
idxVal = codec.EncodeInt(idxVal, partitionID)
return idxVal
}
// IndexValueSegments use to store result of SplitIndexValue.
type IndexValueSegments struct {
CommonHandle []byte
PartitionID []byte
RestoredValues []byte
IntHandle []byte
}
// SplitIndexValue splits index value into segments.
func SplitIndexValue(value []byte) (segs IndexValueSegments) {
tailLen := int(value[0])
tail := value[len(value)-tailLen:]
value = value[1 : len(value)-tailLen]
if len(tail) >= 8 {
segs.IntHandle = tail[:8]
}
if len(value) > 0 && value[0] == CommonHandleFlag {
handleLen := uint16(value[1])<<8 + uint16(value[2])
handleEndOff := 3 + handleLen
segs.CommonHandle = value[3:handleEndOff]
value = value[handleEndOff:]
}
if len(value) > 0 && value[0] == PartitionIDFlag {
segs.PartitionID = value[1:9]
value = value[9:]
}
if len(value) > 0 && value[0] == RestoreDataFlag {
segs.RestoredValues = value
}
return
}
// SplitIndexValueForClusteredIndexVersion1 splits index value into segments.
func SplitIndexValueForClusteredIndexVersion1(value []byte) (segs IndexValueSegments) {
tailLen := int(value[0])
// Skip the tailLen and version info.
value = value[3 : len(value)-tailLen]
if len(value) > 0 && value[0] == CommonHandleFlag {
handleLen := uint16(value[1])<<8 + uint16(value[2])
handleEndOff := 3 + handleLen
segs.CommonHandle = value[3:handleEndOff]
value = value[handleEndOff:]
}
if len(value) > 0 && value[0] == PartitionIDFlag {
segs.PartitionID = value[1:9]
value = value[9:]
}
if len(value) > 0 && value[0] == RestoreDataFlag {
segs.RestoredValues = value
}
return
}
func decodeIndexKvForClusteredIndexVersion1(key, value []byte, colsLen int, hdStatus HandleStatus, columns []rowcodec.ColInfo) ([][]byte, error) {
var resultValues [][]byte
var keySuffix []byte
var handle kv.Handle
var err error
segs := SplitIndexValueForClusteredIndexVersion1(value)
resultValues, keySuffix, err = CutIndexKeyNew(key, colsLen)
if err != nil {
return nil, err
}
if segs.RestoredValues != nil {
resultValues, err = decodeRestoredValuesV5(columns[:colsLen], resultValues, segs.RestoredValues)
if err != nil {
return nil, err
}
}
if hdStatus == HandleNotNeeded {
return resultValues, nil
}
if segs.CommonHandle != nil {
// In unique common handle index.
handle, err = kv.NewCommonHandle(segs.CommonHandle)
} else {
// In non-unique index, decode handle in keySuffix.
handle, err = kv.NewCommonHandle(keySuffix)
}
if err != nil {
return nil, err
}
handleBytes, err := reEncodeHandleConsiderNewCollation(handle, columns[colsLen:], segs.RestoredValues)
if err != nil {
return nil, err
}
resultValues = append(resultValues, handleBytes...)
if segs.PartitionID != nil {
_, pid, err := codec.DecodeInt(segs.PartitionID)
if err != nil {
return nil, err
}
datum := types.NewIntDatum(pid)
pidBytes, err := codec.EncodeValue(nil, nil, datum)
if err != nil {
return nil, err
}
resultValues = append(resultValues, pidBytes)
}
return resultValues, nil
}
// decodeIndexKvGeneral decodes index key value pair of new layout in an extensible way.
func decodeIndexKvGeneral(key, value []byte, colsLen int, hdStatus HandleStatus, columns []rowcodec.ColInfo) ([][]byte, error) {
var resultValues [][]byte
var keySuffix []byte
var handle kv.Handle
var err error
segs := SplitIndexValue(value)
resultValues, keySuffix, err = CutIndexKeyNew(key, colsLen)
if err != nil {
return nil, err
}
if segs.RestoredValues != nil { // new collation
resultValues, err = decodeRestoredValues(columns[:colsLen], segs.RestoredValues)
if err != nil {
return nil, err
}
}
if hdStatus == HandleNotNeeded {
return resultValues, nil
}
if segs.IntHandle != nil {
// In unique int handle index.
handle = decodeIntHandleInIndexValue(segs.IntHandle)
} else if segs.CommonHandle != nil {
// In unique common handle index.
handle, err = decodeHandleInIndexKey(segs.CommonHandle)
if err != nil {
return nil, err
}
} else {
// In non-unique index, decode handle in keySuffix
handle, err = decodeHandleInIndexKey(keySuffix)
if err != nil {
return nil, err
}
}
handleBytes, err := reEncodeHandle(handle, hdStatus == HandleIsUnsigned)
if err != nil {
return nil, err
}
resultValues = append(resultValues, handleBytes...)
if segs.PartitionID != nil {
_, pid, err := codec.DecodeInt(segs.PartitionID)
if err != nil {
return nil, err
}
datum := types.NewIntDatum(pid)
pidBytes, err := codec.EncodeValue(nil, nil, datum)
if err != nil {
return nil, err
}
resultValues = append(resultValues, pidBytes)
}
return resultValues, nil
}
// IndexKVIsUnique uses to judge if an index is unique, it can handle the KV committed by txn already, it doesn't consider the untouched flag.
func IndexKVIsUnique(value []byte) bool {
if len(value) <= MaxOldEncodeValueLen {
return len(value) == 8
}
if getIndexVersion(value) == 1 {
segs := SplitIndexValueForClusteredIndexVersion1(value)
return segs.CommonHandle != nil
}
segs := SplitIndexValue(value)
return segs.IntHandle != nil || segs.CommonHandle != nil
}
相关信息
相关文章
0
赞
热门推荐
-
2、 - 优质文章
-
3、 gate.io
-
8、 golang
-
9、 openharmony
-
10、 Vue中input框自动聚焦