airflow branch_python 源码
airflow branch_python 代码
文件路径:/airflow/decorators/branch_python.py
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
from __future__ import annotations
import inspect
from textwrap import dedent
from typing import Callable, Sequence
from airflow.decorators.base import DecoratedOperator, TaskDecorator, task_decorator_factory
from airflow.operators.python import BranchPythonOperator
from airflow.utils.decorators import remove_task_decorator
class _BranchPythonDecoratedOperator(DecoratedOperator, BranchPythonOperator):
"""
Wraps a Python callable and captures args/kwargs when called for execution.
:param python_callable: A reference to an object that is callable
:param op_kwargs: a dictionary of keyword arguments that will get unpacked
in your function (templated)
:param op_args: a list of positional arguments that will get unpacked when
calling your callable (templated)
:param multiple_outputs: if set, function return value will be
unrolled to multiple XCom values. Dict will unroll to xcom values with keys as keys.
Defaults to False.
"""
template_fields: Sequence[str] = ('op_args', 'op_kwargs')
template_fields_renderers = {"op_args": "py", "op_kwargs": "py"}
# since we won't mutate the arguments, we should just do the shallow copy
# there are some cases we can't deepcopy the objects (e.g protobuf).
shallow_copy_attrs: Sequence[str] = ('python_callable',)
custom_operator_name: str = "@task.branch"
def __init__(
self,
**kwargs,
) -> None:
kwargs_to_upstream = {
"python_callable": kwargs["python_callable"],
"op_args": kwargs["op_args"],
"op_kwargs": kwargs["op_kwargs"],
}
super().__init__(kwargs_to_upstream=kwargs_to_upstream, **kwargs)
def get_python_source(self):
raw_source = inspect.getsource(self.python_callable)
res = dedent(raw_source)
res = remove_task_decorator(res, "@task.branch")
return res
def branch_task(
python_callable: Callable | None = None, multiple_outputs: bool | None = None, **kwargs
) -> TaskDecorator:
"""
Wraps a python function into a BranchPythonOperator
For more information on how to use this operator, take a look at the guide:
:ref:`howto/operator:BranchPythonOperator`
Accepts kwargs for operator kwarg. Can be reused in a single DAG.
:param python_callable: Function to decorate
:param multiple_outputs: if set, function return value will be
unrolled to multiple XCom values. Dict will unroll to xcom values with keys as XCom keys.
Defaults to False.
"""
return task_decorator_factory(
python_callable=python_callable,
multiple_outputs=multiple_outputs,
decorated_operator_class=_BranchPythonDecoratedOperator,
**kwargs,
)
相关信息
相关文章
0
赞
热门推荐
-
2、 - 优质文章
-
3、 gate.io
-
8、 golang
-
9、 openharmony
-
10、 Vue中input框自动聚焦