go signature 源码

  • 2022-07-15
  • 浏览 (1152)

golang signature 代码

文件路径:/src/cmd/compile/internal/types2/signature.go

// Copyright 2021 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package types2

import "cmd/compile/internal/syntax"

// ----------------------------------------------------------------------------
// API

// A Signature represents a (non-builtin) function or method type.
// The receiver is ignored when comparing signatures for identity.
type Signature struct {
	// We need to keep the scope in Signature (rather than passing it around
	// and store it in the Func Object) because when type-checking a function
	// literal we call the general type checker which returns a general Type.
	// We then unpack the *Signature and use the scope for the literal body.
	rparams  *TypeParamList // receiver type parameters from left to right, or nil
	tparams  *TypeParamList // type parameters from left to right, or nil
	scope    *Scope         // function scope for package-local and non-instantiated signatures; nil otherwise
	recv     *Var           // nil if not a method
	params   *Tuple         // (incoming) parameters from left to right; or nil
	results  *Tuple         // (outgoing) results from left to right; or nil
	variadic bool           // true if the last parameter's type is of the form ...T (or string, for append built-in only)
}

// NewSignatureType creates a new function type for the given receiver,
// receiver type parameters, type parameters, parameters, and results. If
// variadic is set, params must hold at least one parameter and the last
// parameter must be of unnamed slice type. If recv is non-nil, typeParams must
// be empty. If recvTypeParams is non-empty, recv must be non-nil.
func NewSignatureType(recv *Var, recvTypeParams, typeParams []*TypeParam, params, results *Tuple, variadic bool) *Signature {
	if variadic {
		n := params.Len()
		if n == 0 {
			panic("variadic function must have at least one parameter")
		}
		if _, ok := params.At(n - 1).typ.(*Slice); !ok {
			panic("variadic parameter must be of unnamed slice type")
		}
	}
	sig := &Signature{recv: recv, params: params, results: results, variadic: variadic}
	if len(recvTypeParams) != 0 {
		if recv == nil {
			panic("function with receiver type parameters must have a receiver")
		}
		sig.rparams = bindTParams(recvTypeParams)
	}
	if len(typeParams) != 0 {
		if recv != nil {
			panic("function with type parameters cannot have a receiver")
		}
		sig.tparams = bindTParams(typeParams)
	}
	return sig
}

// Recv returns the receiver of signature s (if a method), or nil if a
// function. It is ignored when comparing signatures for identity.
//
// For an abstract method, Recv returns the enclosing interface either
// as a *Named or an *Interface. Due to embedding, an interface may
// contain methods whose receiver type is a different interface.
func (s *Signature) Recv() *Var { return s.recv }

// TypeParams returns the type parameters of signature s, or nil.
func (s *Signature) TypeParams() *TypeParamList { return s.tparams }

// SetTypeParams sets the type parameters of signature s.
func (s *Signature) SetTypeParams(tparams []*TypeParam) { s.tparams = bindTParams(tparams) }

// RecvTypeParams returns the receiver type parameters of signature s, or nil.
func (s *Signature) RecvTypeParams() *TypeParamList { return s.rparams }

// Params returns the parameters of signature s, or nil.
func (s *Signature) Params() *Tuple { return s.params }

// Results returns the results of signature s, or nil.
func (s *Signature) Results() *Tuple { return s.results }

// Variadic reports whether the signature s is variadic.
func (s *Signature) Variadic() bool { return s.variadic }

func (s *Signature) Underlying() Type { return s }
func (s *Signature) String() string   { return TypeString(s, nil) }

// ----------------------------------------------------------------------------
// Implementation

// funcType type-checks a function or method type.
func (check *Checker) funcType(sig *Signature, recvPar *syntax.Field, tparams []*syntax.Field, ftyp *syntax.FuncType) {
	check.openScope(ftyp, "function")
	check.scope.isFunc = true
	check.recordScope(ftyp, check.scope)
	sig.scope = check.scope
	defer check.closeScope()

	if recvPar != nil {
		// collect generic receiver type parameters, if any
		// - a receiver type parameter is like any other type parameter, except that it is declared implicitly
		// - the receiver specification acts as local declaration for its type parameters, which may be blank
		_, rname, rparams := check.unpackRecv(recvPar.Type, true)
		if len(rparams) > 0 {
			tparams := make([]*TypeParam, len(rparams))
			for i, rparam := range rparams {
				tparams[i] = check.declareTypeParam(rparam)
			}
			sig.rparams = bindTParams(tparams)
			// Blank identifiers don't get declared, so naive type-checking of the
			// receiver type expression would fail in Checker.collectParams below,
			// when Checker.ident cannot resolve the _ to a type.
			//
			// Checker.recvTParamMap maps these blank identifiers to their type parameter
			// types, so that they may be resolved in Checker.ident when they fail
			// lookup in the scope.
			for i, p := range rparams {
				if p.Value == "_" {
					if check.recvTParamMap == nil {
						check.recvTParamMap = make(map[*syntax.Name]*TypeParam)
					}
					check.recvTParamMap[p] = tparams[i]
				}
			}
			// determine receiver type to get its type parameters
			// and the respective type parameter bounds
			var recvTParams []*TypeParam
			if rname != nil {
				// recv should be a Named type (otherwise an error is reported elsewhere)
				// Also: Don't report an error via genericType since it will be reported
				//       again when we type-check the signature.
				// TODO(gri) maybe the receiver should be marked as invalid instead?
				if recv, _ := check.genericType(rname, false).(*Named); recv != nil {
					recvTParams = recv.TypeParams().list()
				}
			}
			// provide type parameter bounds
			if len(tparams) == len(recvTParams) {
				smap := makeRenameMap(recvTParams, tparams)
				for i, tpar := range tparams {
					recvTPar := recvTParams[i]
					check.mono.recordCanon(tpar, recvTPar)
					// recvTPar.bound is (possibly) parameterized in the context of the
					// receiver type declaration. Substitute parameters for the current
					// context.
					tpar.bound = check.subst(tpar.obj.pos, recvTPar.bound, smap, nil, check.context())
				}
			} else if len(tparams) < len(recvTParams) {
				// Reporting an error here is a stop-gap measure to avoid crashes in the
				// compiler when a type parameter/argument cannot be inferred later. It
				// may lead to follow-on errors (see issues #51339, #51343).
				// TODO(gri) find a better solution
				got := measure(len(tparams), "type parameter")
				check.errorf(recvPar, "got %s, but receiver base type declares %d", got, len(recvTParams))
			}
		}
	}

	if tparams != nil {
		// The parser will complain about invalid type parameters for methods.
		check.collectTypeParams(&sig.tparams, tparams)
	}

	// Value (non-type) parameters' scope starts in the function body. Use a temporary scope for their
	// declarations and then squash that scope into the parent scope (and report any redeclarations at
	// that time).
	scope := NewScope(check.scope, nopos, nopos, "function body (temp. scope)")
	var recvList []*Var // TODO(gri) remove the need for making a list here
	if recvPar != nil {
		recvList, _ = check.collectParams(scope, []*syntax.Field{recvPar}, false) // use rewritten receiver type, if any
	}
	params, variadic := check.collectParams(scope, ftyp.ParamList, true)
	results, _ := check.collectParams(scope, ftyp.ResultList, false)
	scope.Squash(func(obj, alt Object) {
		var err error_
		err.errorf(obj, "%s redeclared in this block", obj.Name())
		err.recordAltDecl(alt)
		check.report(&err)
	})

	if recvPar != nil {
		// recv parameter list present (may be empty)
		// spec: "The receiver is specified via an extra parameter section preceding the
		// method name. That parameter section must declare a single parameter, the receiver."
		var recv *Var
		switch len(recvList) {
		case 0:
			// error reported by resolver
			recv = NewParam(nopos, nil, "", Typ[Invalid]) // ignore recv below
		default:
			// more than one receiver
			check.error(recvList[len(recvList)-1].Pos(), "method must have exactly one receiver")
			fallthrough // continue with first receiver
		case 1:
			recv = recvList[0]
		}
		sig.recv = recv

		// Delay validation of receiver type as it may cause premature expansion
		// of types the receiver type is dependent on (see issues #51232, #51233).
		check.later(func() {
			// spec: "The receiver type must be of the form T or *T where T is a type name."
			rtyp, _ := deref(recv.typ)
			if rtyp == Typ[Invalid] {
				return // error was reported before
			}
			// spec: "The type denoted by T is called the receiver base type; it must not
			// be a pointer or interface type and it must be declared in the same package
			// as the method."
			switch T := rtyp.(type) {
			case *Named:
				// The receiver type may be an instantiated type referred to
				// by an alias (which cannot have receiver parameters for now).
				if T.TypeArgs() != nil && sig.RecvTypeParams() == nil {
					check.errorf(recv, "cannot define new methods on instantiated type %s", rtyp)
					break
				}
				if T.obj.pkg != check.pkg {
					check.errorf(recv, "cannot define new methods on non-local type %s", rtyp)
					break
				}
				var cause string
				switch u := T.under().(type) {
				case *Basic:
					// unsafe.Pointer is treated like a regular pointer
					if u.kind == UnsafePointer {
						cause = "unsafe.Pointer"
					}
				case *Pointer, *Interface:
					cause = "pointer or interface type"
				case *TypeParam:
					// The underlying type of a receiver base type cannot be a
					// type parameter: "type T[P any] P" is not a valid declaration.
					unreachable()
				}
				if cause != "" {
					check.errorf(recv, "invalid receiver type %s (%s)", rtyp, cause)
				}
			case *Basic:
				check.errorf(recv, "cannot define new methods on non-local type %s", rtyp)
			default:
				check.errorf(recv, "invalid receiver type %s", recv.typ)
			}
		}).describef(recv, "validate receiver %s", recv)
	}

	sig.params = NewTuple(params...)
	sig.results = NewTuple(results...)
	sig.variadic = variadic
}

// collectParams declares the parameters of list in scope and returns the corresponding
// variable list.
func (check *Checker) collectParams(scope *Scope, list []*syntax.Field, variadicOk bool) (params []*Var, variadic bool) {
	if list == nil {
		return
	}

	var named, anonymous bool

	var typ Type
	var prev syntax.Expr
	for i, field := range list {
		ftype := field.Type
		// type-check type of grouped fields only once
		if ftype != prev {
			prev = ftype
			if t, _ := ftype.(*syntax.DotsType); t != nil {
				ftype = t.Elem
				if variadicOk && i == len(list)-1 {
					variadic = true
				} else {
					check.softErrorf(t, "can only use ... with final parameter in list")
					// ignore ... and continue
				}
			}
			typ = check.varType(ftype)
		}
		// The parser ensures that f.Tag is nil and we don't
		// care if a constructed AST contains a non-nil tag.
		if field.Name != nil {
			// named parameter
			name := field.Name.Value
			if name == "" {
				check.error(field.Name, invalidAST+"anonymous parameter")
				// ok to continue
			}
			par := NewParam(field.Name.Pos(), check.pkg, name, typ)
			check.declare(scope, field.Name, par, scope.pos)
			params = append(params, par)
			named = true
		} else {
			// anonymous parameter
			par := NewParam(field.Pos(), check.pkg, "", typ)
			check.recordImplicit(field, par)
			params = append(params, par)
			anonymous = true
		}
	}

	if named && anonymous {
		check.error(list[0], invalidAST+"list contains both named and anonymous parameters")
		// ok to continue
	}

	// For a variadic function, change the last parameter's type from T to []T.
	// Since we type-checked T rather than ...T, we also need to retro-actively
	// record the type for ...T.
	if variadic {
		last := params[len(params)-1]
		last.typ = &Slice{elem: last.typ}
		check.recordTypeAndValue(list[len(list)-1].Type, typexpr, last.typ, nil)
	}

	return
}

相关信息

go 源码目录

相关文章

go api 源码

go api_test 源码

go array 源码

go assignments 源码

go basic 源码

go builtins 源码

go builtins_test 源码

go call 源码

go chan 源码

go check 源码

0  赞