go range 源码

  • 2022-07-15
  • 浏览 (939)

golang range 代码

文件路径:/src/cmd/compile/internal/walk/range.go

// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package walk

import (
	"unicode/utf8"

	"cmd/compile/internal/base"
	"cmd/compile/internal/ir"
	"cmd/compile/internal/reflectdata"
	"cmd/compile/internal/ssagen"
	"cmd/compile/internal/typecheck"
	"cmd/compile/internal/types"
	"cmd/internal/sys"
)

func cheapComputableIndex(width int64) bool {
	switch ssagen.Arch.LinkArch.Family {
	// MIPS does not have R+R addressing
	// Arm64 may lack ability to generate this code in our assembler,
	// but the architecture supports it.
	case sys.PPC64, sys.S390X:
		return width == 1
	case sys.AMD64, sys.I386, sys.ARM64, sys.ARM:
		switch width {
		case 1, 2, 4, 8:
			return true
		}
	}
	return false
}

// walkRange transforms various forms of ORANGE into
// simpler forms.  The result must be assigned back to n.
// Node n may also be modified in place, and may also be
// the returned node.
func walkRange(nrange *ir.RangeStmt) ir.Node {
	if isMapClear(nrange) {
		m := nrange.X
		lno := ir.SetPos(m)
		n := mapClear(m)
		base.Pos = lno
		return n
	}

	nfor := ir.NewForStmt(nrange.Pos(), nil, nil, nil, nil)
	nfor.SetInit(nrange.Init())
	nfor.Label = nrange.Label

	// variable name conventions:
	//	ohv1, hv1, hv2: hidden (old) val 1, 2
	//	ha, hit: hidden aggregate, iterator
	//	hn, hp: hidden len, pointer
	//	hb: hidden bool
	//	a, v1, v2: not hidden aggregate, val 1, 2

	a := nrange.X
	t := typecheck.RangeExprType(a.Type())
	lno := ir.SetPos(a)

	v1, v2 := nrange.Key, nrange.Value

	if ir.IsBlank(v2) {
		v2 = nil
	}

	if ir.IsBlank(v1) && v2 == nil {
		v1 = nil
	}

	if v1 == nil && v2 != nil {
		base.Fatalf("walkRange: v2 != nil while v1 == nil")
	}

	var ifGuard *ir.IfStmt

	var body []ir.Node
	var init []ir.Node
	switch t.Kind() {
	default:
		base.Fatalf("walkRange")

	case types.TARRAY, types.TSLICE:
		if nn := arrayClear(nrange, v1, v2, a); nn != nil {
			base.Pos = lno
			return nn
		}

		// order.stmt arranged for a copy of the array/slice variable if needed.
		ha := a

		hv1 := typecheck.Temp(types.Types[types.TINT])
		hn := typecheck.Temp(types.Types[types.TINT])

		init = append(init, ir.NewAssignStmt(base.Pos, hv1, nil))
		init = append(init, ir.NewAssignStmt(base.Pos, hn, ir.NewUnaryExpr(base.Pos, ir.OLEN, ha)))

		nfor.Cond = ir.NewBinaryExpr(base.Pos, ir.OLT, hv1, hn)
		nfor.Post = ir.NewAssignStmt(base.Pos, hv1, ir.NewBinaryExpr(base.Pos, ir.OADD, hv1, ir.NewInt(1)))

		// for range ha { body }
		if v1 == nil {
			break
		}

		// for v1 := range ha { body }
		if v2 == nil {
			body = []ir.Node{ir.NewAssignStmt(base.Pos, v1, hv1)}
			break
		}

		// for v1, v2 := range ha { body }
		if cheapComputableIndex(t.Elem().Size()) {
			// v1, v2 = hv1, ha[hv1]
			tmp := ir.NewIndexExpr(base.Pos, ha, hv1)
			tmp.SetBounded(true)
			// Use OAS2 to correctly handle assignments
			// of the form "v1, a[v1] := range".
			a := ir.NewAssignListStmt(base.Pos, ir.OAS2, []ir.Node{v1, v2}, []ir.Node{hv1, tmp})
			body = []ir.Node{a}
			break
		}

		// TODO(austin): OFORUNTIL is a strange beast, but is
		// necessary for expressing the control flow we need
		// while also making "break" and "continue" work. It
		// would be nice to just lower ORANGE during SSA, but
		// racewalk needs to see many of the operations
		// involved in ORANGE's implementation. If racewalk
		// moves into SSA, consider moving ORANGE into SSA and
		// eliminating OFORUNTIL.

		// TODO(austin): OFORUNTIL inhibits bounds-check
		// elimination on the index variable (see #20711).
		// Enhance the prove pass to understand this.
		ifGuard = ir.NewIfStmt(base.Pos, nil, nil, nil)
		ifGuard.Cond = ir.NewBinaryExpr(base.Pos, ir.OLT, hv1, hn)
		nfor.SetOp(ir.OFORUNTIL)

		hp := typecheck.Temp(types.NewPtr(t.Elem()))
		tmp := ir.NewIndexExpr(base.Pos, ha, ir.NewInt(0))
		tmp.SetBounded(true)
		init = append(init, ir.NewAssignStmt(base.Pos, hp, typecheck.NodAddr(tmp)))

		// Use OAS2 to correctly handle assignments
		// of the form "v1, a[v1] := range".
		a := ir.NewAssignListStmt(base.Pos, ir.OAS2, []ir.Node{v1, v2}, []ir.Node{hv1, ir.NewStarExpr(base.Pos, hp)})
		body = append(body, a)

		// Advance pointer as part of the late increment.
		//
		// This runs *after* the condition check, so we know
		// advancing the pointer is safe and won't go past the
		// end of the allocation.
		as := ir.NewAssignStmt(base.Pos, hp, addptr(hp, t.Elem().Size()))
		nfor.Late = []ir.Node{typecheck.Stmt(as)}

	case types.TMAP:
		// order.stmt allocated the iterator for us.
		// we only use a once, so no copy needed.
		ha := a

		hit := nrange.Prealloc
		th := hit.Type()
		// depends on layout of iterator struct.
		// See cmd/compile/internal/reflectdata/reflect.go:MapIterType
		keysym := th.Field(0).Sym
		elemsym := th.Field(1).Sym // ditto

		fn := typecheck.LookupRuntime("mapiterinit")

		fn = typecheck.SubstArgTypes(fn, t.Key(), t.Elem(), th)
		init = append(init, mkcallstmt1(fn, reflectdata.TypePtr(t), ha, typecheck.NodAddr(hit)))
		nfor.Cond = ir.NewBinaryExpr(base.Pos, ir.ONE, ir.NewSelectorExpr(base.Pos, ir.ODOT, hit, keysym), typecheck.NodNil())

		fn = typecheck.LookupRuntime("mapiternext")
		fn = typecheck.SubstArgTypes(fn, th)
		nfor.Post = mkcallstmt1(fn, typecheck.NodAddr(hit))

		key := ir.NewStarExpr(base.Pos, ir.NewSelectorExpr(base.Pos, ir.ODOT, hit, keysym))
		if v1 == nil {
			body = nil
		} else if v2 == nil {
			body = []ir.Node{ir.NewAssignStmt(base.Pos, v1, key)}
		} else {
			elem := ir.NewStarExpr(base.Pos, ir.NewSelectorExpr(base.Pos, ir.ODOT, hit, elemsym))
			a := ir.NewAssignListStmt(base.Pos, ir.OAS2, []ir.Node{v1, v2}, []ir.Node{key, elem})
			body = []ir.Node{a}
		}

	case types.TCHAN:
		// order.stmt arranged for a copy of the channel variable.
		ha := a

		hv1 := typecheck.Temp(t.Elem())
		hv1.SetTypecheck(1)
		if t.Elem().HasPointers() {
			init = append(init, ir.NewAssignStmt(base.Pos, hv1, nil))
		}
		hb := typecheck.Temp(types.Types[types.TBOOL])

		nfor.Cond = ir.NewBinaryExpr(base.Pos, ir.ONE, hb, ir.NewBool(false))
		lhs := []ir.Node{hv1, hb}
		rhs := []ir.Node{ir.NewUnaryExpr(base.Pos, ir.ORECV, ha)}
		a := ir.NewAssignListStmt(base.Pos, ir.OAS2RECV, lhs, rhs)
		a.SetTypecheck(1)
		nfor.Cond = ir.InitExpr([]ir.Node{a}, nfor.Cond)
		if v1 == nil {
			body = nil
		} else {
			body = []ir.Node{ir.NewAssignStmt(base.Pos, v1, hv1)}
		}
		// Zero hv1. This prevents hv1 from being the sole, inaccessible
		// reference to an otherwise GC-able value during the next channel receive.
		// See issue 15281.
		body = append(body, ir.NewAssignStmt(base.Pos, hv1, nil))

	case types.TSTRING:
		// Transform string range statements like "for v1, v2 = range a" into
		//
		// ha := a
		// for hv1 := 0; hv1 < len(ha); {
		//   hv1t := hv1
		//   hv2 := rune(ha[hv1])
		//   if hv2 < utf8.RuneSelf {
		//      hv1++
		//   } else {
		//      hv2, hv1 = decoderune(ha, hv1)
		//   }
		//   v1, v2 = hv1t, hv2
		//   // original body
		// }

		// order.stmt arranged for a copy of the string variable.
		ha := a

		hv1 := typecheck.Temp(types.Types[types.TINT])
		hv1t := typecheck.Temp(types.Types[types.TINT])
		hv2 := typecheck.Temp(types.RuneType)

		// hv1 := 0
		init = append(init, ir.NewAssignStmt(base.Pos, hv1, nil))

		// hv1 < len(ha)
		nfor.Cond = ir.NewBinaryExpr(base.Pos, ir.OLT, hv1, ir.NewUnaryExpr(base.Pos, ir.OLEN, ha))

		if v1 != nil {
			// hv1t = hv1
			body = append(body, ir.NewAssignStmt(base.Pos, hv1t, hv1))
		}

		// hv2 := rune(ha[hv1])
		nind := ir.NewIndexExpr(base.Pos, ha, hv1)
		nind.SetBounded(true)
		body = append(body, ir.NewAssignStmt(base.Pos, hv2, typecheck.Conv(nind, types.RuneType)))

		// if hv2 < utf8.RuneSelf
		nif := ir.NewIfStmt(base.Pos, nil, nil, nil)
		nif.Cond = ir.NewBinaryExpr(base.Pos, ir.OLT, hv2, ir.NewInt(utf8.RuneSelf))

		// hv1++
		nif.Body = []ir.Node{ir.NewAssignStmt(base.Pos, hv1, ir.NewBinaryExpr(base.Pos, ir.OADD, hv1, ir.NewInt(1)))}

		// } else {
		// hv2, hv1 = decoderune(ha, hv1)
		fn := typecheck.LookupRuntime("decoderune")
		call := mkcall1(fn, fn.Type().Results(), &nif.Else, ha, hv1)
		a := ir.NewAssignListStmt(base.Pos, ir.OAS2, []ir.Node{hv2, hv1}, []ir.Node{call})
		nif.Else.Append(a)

		body = append(body, nif)

		if v1 != nil {
			if v2 != nil {
				// v1, v2 = hv1t, hv2
				a := ir.NewAssignListStmt(base.Pos, ir.OAS2, []ir.Node{v1, v2}, []ir.Node{hv1t, hv2})
				body = append(body, a)
			} else {
				// v1 = hv1t
				body = append(body, ir.NewAssignStmt(base.Pos, v1, hv1t))
			}
		}
	}

	typecheck.Stmts(init)

	if ifGuard != nil {
		ifGuard.PtrInit().Append(init...)
		ifGuard = typecheck.Stmt(ifGuard).(*ir.IfStmt)
	} else {
		nfor.PtrInit().Append(init...)
	}

	typecheck.Stmts(nfor.Cond.Init())

	nfor.Cond = typecheck.Expr(nfor.Cond)
	nfor.Cond = typecheck.DefaultLit(nfor.Cond, nil)
	nfor.Post = typecheck.Stmt(nfor.Post)
	typecheck.Stmts(body)
	nfor.Body.Append(body...)
	nfor.Body.Append(nrange.Body...)

	var n ir.Node = nfor
	if ifGuard != nil {
		ifGuard.Body = []ir.Node{n}
		n = ifGuard
	}

	n = walkStmt(n)

	base.Pos = lno
	return n
}

// isMapClear checks if n is of the form:
//
//	for k := range m {
//		delete(m, k)
//	}
//
// where == for keys of map m is reflexive.
func isMapClear(n *ir.RangeStmt) bool {
	if base.Flag.N != 0 || base.Flag.Cfg.Instrumenting {
		return false
	}

	t := n.X.Type()
	if n.Op() != ir.ORANGE || t.Kind() != types.TMAP || n.Key == nil || n.Value != nil {
		return false
	}

	k := n.Key
	// Require k to be a new variable name.
	if !ir.DeclaredBy(k, n) {
		return false
	}

	if len(n.Body) != 1 {
		return false
	}

	stmt := n.Body[0] // only stmt in body
	if stmt == nil || stmt.Op() != ir.ODELETE {
		return false
	}

	m := n.X
	if delete := stmt.(*ir.CallExpr); !ir.SameSafeExpr(delete.Args[0], m) || !ir.SameSafeExpr(delete.Args[1], k) {
		return false
	}

	// Keys where equality is not reflexive can not be deleted from maps.
	if !types.IsReflexive(t.Key()) {
		return false
	}

	return true
}

// mapClear constructs a call to runtime.mapclear for the map m.
func mapClear(m ir.Node) ir.Node {
	t := m.Type()

	// instantiate mapclear(typ *type, hmap map[any]any)
	fn := typecheck.LookupRuntime("mapclear")
	fn = typecheck.SubstArgTypes(fn, t.Key(), t.Elem())
	n := mkcallstmt1(fn, reflectdata.TypePtr(t), m)
	return walkStmt(typecheck.Stmt(n))
}

// Lower n into runtime·memclr if possible, for
// fast zeroing of slices and arrays (issue 5373).
// Look for instances of
//
//	for i := range a {
//		a[i] = zero
//	}
//
// in which the evaluation of a is side-effect-free.
//
// Parameters are as in walkRange: "for v1, v2 = range a".
func arrayClear(loop *ir.RangeStmt, v1, v2, a ir.Node) ir.Node {
	if base.Flag.N != 0 || base.Flag.Cfg.Instrumenting {
		return nil
	}

	if v1 == nil || v2 != nil {
		return nil
	}

	if len(loop.Body) != 1 || loop.Body[0] == nil {
		return nil
	}

	stmt1 := loop.Body[0] // only stmt in body
	if stmt1.Op() != ir.OAS {
		return nil
	}
	stmt := stmt1.(*ir.AssignStmt)
	if stmt.X.Op() != ir.OINDEX {
		return nil
	}
	lhs := stmt.X.(*ir.IndexExpr)
	x := lhs.X
	if a.Type().IsPtr() && a.Type().Elem().IsArray() {
		if s, ok := x.(*ir.StarExpr); ok && s.Op() == ir.ODEREF {
			x = s.X
		}
	}

	if !ir.SameSafeExpr(x, a) || !ir.SameSafeExpr(lhs.Index, v1) {
		return nil
	}

	elemsize := typecheck.RangeExprType(loop.X.Type()).Elem().Size()
	if elemsize <= 0 || !ir.IsZero(stmt.Y) {
		return nil
	}

	// Convert to
	// if len(a) != 0 {
	// 	hp = &a[0]
	// 	hn = len(a)*sizeof(elem(a))
	// 	memclr{NoHeap,Has}Pointers(hp, hn)
	// 	i = len(a) - 1
	// }
	n := ir.NewIfStmt(base.Pos, nil, nil, nil)
	n.Cond = ir.NewBinaryExpr(base.Pos, ir.ONE, ir.NewUnaryExpr(base.Pos, ir.OLEN, a), ir.NewInt(0))

	// hp = &a[0]
	hp := typecheck.Temp(types.Types[types.TUNSAFEPTR])

	ix := ir.NewIndexExpr(base.Pos, a, ir.NewInt(0))
	ix.SetBounded(true)
	addr := typecheck.ConvNop(typecheck.NodAddr(ix), types.Types[types.TUNSAFEPTR])
	n.Body.Append(ir.NewAssignStmt(base.Pos, hp, addr))

	// hn = len(a) * sizeof(elem(a))
	hn := typecheck.Temp(types.Types[types.TUINTPTR])
	mul := typecheck.Conv(ir.NewBinaryExpr(base.Pos, ir.OMUL, ir.NewUnaryExpr(base.Pos, ir.OLEN, a), ir.NewInt(elemsize)), types.Types[types.TUINTPTR])
	n.Body.Append(ir.NewAssignStmt(base.Pos, hn, mul))

	var fn ir.Node
	if a.Type().Elem().HasPointers() {
		// memclrHasPointers(hp, hn)
		ir.CurFunc.SetWBPos(stmt.Pos())
		fn = mkcallstmt("memclrHasPointers", hp, hn)
	} else {
		// memclrNoHeapPointers(hp, hn)
		fn = mkcallstmt("memclrNoHeapPointers", hp, hn)
	}

	n.Body.Append(fn)

	// i = len(a) - 1
	v1 = ir.NewAssignStmt(base.Pos, v1, ir.NewBinaryExpr(base.Pos, ir.OSUB, ir.NewUnaryExpr(base.Pos, ir.OLEN, a), ir.NewInt(1)))

	n.Body.Append(v1)

	n.Cond = typecheck.Expr(n.Cond)
	n.Cond = typecheck.DefaultLit(n.Cond, nil)
	typecheck.Stmts(n.Body)
	return walkStmt(n)
}

// addptr returns (*T)(uintptr(p) + n).
func addptr(p ir.Node, n int64) ir.Node {
	t := p.Type()

	p = ir.NewConvExpr(base.Pos, ir.OCONVNOP, nil, p)
	p.SetType(types.Types[types.TUINTPTR])

	p = ir.NewBinaryExpr(base.Pos, ir.OADD, p, ir.NewInt(n))

	p = ir.NewConvExpr(base.Pos, ir.OCONVNOP, nil, p)
	p.SetType(t)

	return p
}

相关信息

go 源码目录

相关文章

go assign 源码

go builtin 源码

go closure 源码

go compare 源码

go complit 源码

go convert 源码

go expr 源码

go order 源码

go race 源码

go select 源码

0  赞